Development of models to predict product deposition from coverage obtained on artificial collectors and their practical application

  • Cruz Garcerá Centro de Agroingeniería, Instituto Valenciano de Investigaciones Agrarias (IVIA). Ctra. Moncada-Náquera km. 4.5. 46113-Moncada (Valencia)
  • Enrique Moltó Centro de Agroingeniería, Instituto Valenciano de Investigaciones Agrarias (IVIA). Ctra. Moncada-Náquera km. 4.5. 46113-Moncada (Valencia)
  • Patricia Chueca Centro de Agroingeniería, Instituto Valenciano de Investigaciones Agrarias (IVIA). Ctra. Moncada-Náquera km. 4.5. 46113-Moncada (Valencia)
Keywords: treatment, spray, PVC, water sensitive paper, pesticide, efficacy, citrus, California red scale

Abstract

Models to relate the observed coverage on artificial collectors used in field tests (water-sensitive paper, WSP) and in laboratory bioassays of citrus pests (pieces of polyvinyl chloride sheets, PVC) with product deposition are described. Different solutions of plant protection products commonly used for pest control in citrus were sprayed in a Potter Tower on PVC and WSP under the same controlled conditions. These experiments led to the formulation of different basic models to relate coverage and deposition depending on the products and collectors. The best fitting model was selected from among those that had highest coefficients of determination (R2) and lowest estimation error (RMSEP), and at the same time resulted in a normal distribution of residuals. Finally, coverage on pieces of PVC sheets was related with coverage obtained on WSP by different equations depending on the product being applied. Such equations can be used to link laboratory and field results in order to assess the quality of a spray application in citrus cultivation.

Downloads

Download data is not yet available.

Author Biography

Patricia Chueca, Centro de Agroingeniería, Instituto Valenciano de Investigaciones Agrarias (IVIA). Ctra. Moncada-Náquera km. 4.5. 46113-Moncada (Valencia)
Centro de Agroingeniería. Investigadora

References

Butler-Ellis MC, Tuck CR, Miller PCH, 2001. How surface tension of surfactant solutions influences the characteristics of sprays produced by hydraulic nozzles used for pesticides application. Colloid Surface A 180: 267-276. http://dx.doi.org/10.1016/S0927-7757(00)00776-7

Chueca P, Garcerá C, Moltó E, Jacas JA, Urbaneja A, Pina T, 2010. Spray deposition and efficacy of four petroleum-derived oils used against Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 103: 386-393. http://dx.doi.org/10.1603/EC09242

Cross JV, Murray RA, Ridout MS, Walklate PJ, 1997. Quantification of spray deposits and their variability on apple trees. Aspect Appl Biol 48: 217-224.

Cross JV, Walklate PJ, Murray RA, Richardson GM, 2003. Spray deposits and losses in different sized apple trees from an axial fan orchard sprayer: 3. Effects of air volumetric flow rate. Crop Prot 22: 381-394. http://dx.doi.org/10.1016/S0261-2194(02)00192-8

Ebert TA, Hall FR, 1999. Deposit structure effects on insecticide bioassays. J Econ Entomol 92: 1007-1013.

Ebert TA, Downer RA, 2006. A different look at experiments on pesticide distribution. Crop Prot 25: 299-309. http://dx.doi.org/10.1016/j.cropro.2005.06.002

Farooq M, Salyani M, 2004. Modelling of spray penetration and deposition on citrus tree canopies. T ASAE 47 (3): 619-627. http://dx.doi.org/10.13031/2013.16091

Fox RD, Derksen RC, Cooper JA, Krause CR, Ozkan HE, 2003. Visual and image system measurement of spray deposits using water-sensitive paper. Appl Eng Agr 19: 549-552.

Garcerá C, Moltó E, Chueca P, 2011. Effect of spray volume of two organophosphate pesticides on coverage and mortality of Aonidiella aurantii Maskell. Crop Prot 30: 693-697. http://dx.doi.org/10.1016/j.cropro.2011.02.019

Garcerá C, Moltó E, Zarzo M, Chueca P, 2012. Modelling the spray deposition and efficacy of two mineral oil-based products for the control of Aonidiella aurantii (Maskell). Crop Prot 31: 78-84. http://dx.doi.org/10.1016/j.cropro.2011.10.004

Garcerá C, Moltó E, Chueca P, 2014. Factors influencing the efficacy of two organophosphate insecticides in controlling California red scale, Aonidiella aurantii (Maskell). A basis for reducing spray application volume in Mediterranean conditions. Pest Manag Sci 70: 28-38. http://dx.doi.org/10.1002/ps.3515

Hislop EC, 1987. Can we define and achieve optimum pesticide deposits? Aspects Appl Biol 14: 153-172.

Holownicki R, Doruchowski G, Godyn A, 1996. Efficient spray deposition in the orchard using a tunnel sprayer with a new concept of air jet emission. IOBC/WPRS Bull 19: 284-288.

Holownicki R, Doruchowski G, Swiechowski W, Jaeken P, 2002. Methods of evaluation of spray deposit and coverage on artificial targets. Electronic Journal of Polish Agricultural Universities 5 (1) #3. Available in http://www.ejpau.media.pl/volume5/issue1/engineering/art-03.html. [9 January 2011].

Jiang C, Derksen CR, 1995. Morphological image processing for spray deposit analysis. T ASAE 38: 1581-1591. http://dx.doi.org/10.13031/2013.27985

Marçal ARS, Cunha M, 2008. Image processing of artificial targets for automatic evaluation of spray quality. T ASABE 51: 811-821. http://dx.doi.org/10.13031/2013.24519

Mercader G, Pellicer J, Fabado F, Moltó E, Juste F, 1995. Influencia de los colectores sobre los parámetros característicos de la pulverización en cítricos. Proc VI Congreso de la SECH, Barcelona (Spain), April 25-27. p: 322.

Nansen C, Hinson B, Davidson D, Vaughn K, Gharalari AH, 2010. Novel approaches to application and performance assessment of insecticide applications to crop leaves. J Econ Entomol 103: 219-227. http://dx.doi.org/10.1603/EC09346

Potter C, 1952. An improved laboratory apparatus for applying direct sprays and surface films, with data on the electrostatic charge on atomized spray fluids. Ann Appl Biol 39: 1-29. http://dx.doi.org/10.1111/j.1744-7348.1952.tb00993.x

Salyani M, Fox RD, 1999. Evaluation of spray quality by oil- and water-sensitive papers. T ASAE 42: 37-43. http://dx.doi.org/10.13031/2013.13206

Salyani M, McCoy CW, Hedden SL, 1988. Spray volume effects on deposition and citrus rust mite control. ASTM STP 980: 254-263.

Salyani M, Zhu H, Sweeb RD, Pai N, 2013. Assessment of spray distribution with water-sensitive paper. Agric Eng Int: CIGR Journal 15: 101-111.

Shapiro SS, Wilk MB, 1965. An analysis of variance test for normality (complete samples). Biometrika 52: 591-611. http://dx.doi.org/10.1093/biomet/52.3-4.591

Vidal E, Domínguez J, Zarzo M, Castillo B, Chueca P, Moltó E, 2003. Modelling the mortality of the California red scale (Aonidiella aurantii Maskell) produced by a mineral oil application in laboratory conditions. OILB/SROP Bull 26: 121.

Published
2014-07-16
How to Cite
Garcerá, C., Moltó, E., & Chueca, P. (2014). Development of models to predict product deposition from coverage obtained on artificial collectors and their practical application. Spanish Journal of Agricultural Research, 12(3), 594-602. https://doi.org/10.5424/sjar/2014123-5186
Section
Agricultural engineering