Effect of the spray volume adjustment model on the efficiency of fungicides and residues in processing tomato

  • Henryk Ratajkiewicz Poznań University of Life Sciences, Faculty of Horticulture and Landscape Architecture, Dept. Entomology and Environmental Protection. Dabrowskiego 159, 60-594 Poznań
  • Roman Kierzek Institute of Plant Protection National Research Institute, Dept. Weed Science and Plant Protection Technique. Władysława Węgorka 20, 60-318 Poznań
  • Michał Raczkowski Institute of Plant Protection National Research Institute, Dept. Pesticide Residue Research, Władysława Węgorka 20, 60-318 Poznań
  • Agnieszka Hołodyńska-Kulas Institute of Plant Protection National Research Institute, Dept. Pesticide Residue Research, Władysława Węgorka 20, 60-318 Poznań
  • Agnieszka Łacka Poznań University of Life Sciences, Faculty of Agronomy and Bioengineering, Dept. Mathematical and Statistical Methods. Wojska Polskiego 28, 60-637 Poznań
  • Andrzej Wójtowicz Institute of Plant Protection National Research Institute, Information, Economy and Decision-Making Systems in Plant Protection – Project. Władysława Węgorka 20, 60-318 Poznań
  • Marek Wachowiak Institute of Plant Protection National Research Institute, Dept. Weed Science and Plant Protection Technique. Władysława Węgorka 20, 60-318 Poznań
Keywords: azoxystrobin, chlorothalonil, Phytophthora infestans, spray deposit, QuEChERS

Abstract

This study compared the effects of a proportionate spray volume (PSV) adjustment model and a fixed model (300 L/ha) on the infestation of processing tomato with potato late blight (Phytophthora infestans (Mont.) de Bary) (PLB) and azoxystrobin and chlorothalonil residues in fruits in three consecutive seasons. The fungicides were applied in alternating system with or without two spreader adjuvants. The proportionate spray volume adjustment model was based on the number of leaves on plants and spray volume index. The modified Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method was optimized and validated for extraction of azoxystrobin and chlorothalonil residue. Gas chromatography with a nitrogen and phosphorus detector and an electron capture detector were used for the analysis of fungicides. The results showed that higher fungicidal residues were connected with lower infestation of tomato with PLB. PSV adjustment model resulted in lower infestation of tomato than the fixed model (300 L/ha) when fungicides were applied at half the dose without adjuvants. Higher expected spray interception into the tomato canopy with the PSV system was recognized as the reasons of better control of PLB. The spreader adjuvants did not have positive effect on the biological efficacy of spray volume application systems. The results suggest that PSV adjustment model can be used to determine the spray volume for fungicide application for processing tomato crop.

Downloads

Download data is not yet available.

References

Bain RA, Ritchie F, Lees A, Dyer C, 2014. Impact of fungicide input on leaf blight (Phytophthora infestans) development on different potato cultivars. Proc of the 14th EuroBlight Workshop, PPO Special Report 16, Schepers HTAM (ed.), Limassol (Cyprus), 12-15 May 2013, pp. 65-73.

Ballee DL, Duane WC, Stallard DE, Wolfe AL, 1976. Chlorothalonil. In: Analytical methods for pesticides and plant growth regulators (Vol. VIII); Zweig G, Sherma J (eds.). pp: 263-274. Academic Press, Inc. http://dx.doi.org/10.1016/b978-0-12-784308-7.50020-x

Bao VW, Koutsaftis A, Leung KM, 2008. Temperature-dependent toxicities of chlorothalonil and copper pyrithione to the marine copepod Tigriopus japonicus and dinoflagellate Pyrocystis lunula. Australas J Ecotoxicol 14(2/3): 45-54.

Bartlet DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B, 2002. The strobilurin fungicides: a review. Pest Manag Sci 58(7): 649-662. http://dx.doi.org/10.1002/ps.520

Bedos C, Cellier P, Calvet R, Barriuso E, Gabrielle B, 2002. Mass transfer of pesticides into the atmosphere by volatilization from soils and plants: overview. Agronomie 22(1): 21-33. http://dx.doi.org/10.1051/agro:2001003

Bedos C, Rousseau-Djabri MF, Loubet B, Durand B, Flura D, Briand O, Barriuso E, 2010. Fungicide volatilization measurements: Inverse modeling, role of vapor pressure, and state of foliar residue. Environ Sci Technol 44(7): 2522-2528. http://dx.doi.org/10.1021/es9030547

Berger RD, 1980. Measuring disease intensity. Proc of EC Stakman Commemorative Symposium on Crop Loss Assessment; Teng PS, Krupa SV (eds.), Minneapolis, MN (US), Aug 20-23. pp: 28 31.

Braunschweiler H, Koivisto S, 2000. Fate and effects of chemicals in the Nordic environments related to the use of biocides. Nordic Council of Ministers, Copenhagen. 135 pp.

Bruhn JA, Fry WE, 1982a. A statistical model of fungicide deposition on potato foliage. Phytopathology 72: 1301-1305. http://dx.doi.org/10.1094/Phyto-72-1301

Bruhn JA, Fry WE, 1982b. A mathematical model of the spatial and temporal dynamics of chorothalonil residues on potato foliage. Phytopathology 72: 1306-1312. http://dx.doi.org/10.1094/Phyto-72-1306

Bugiani R, Cavanni P, Ponti I, 1993. An advisory service for the occurrence of Phytophthora infestans on tomato in Emilia-Romagna region. Bull OEPP 23: 607-613. http://dx.doi.org/10.1111/j.1365-2338.1993.tb00557.x

Čereković N, Todorović M, Snyder RL, 2010. The relationship between leaf area index and crop coefficient for tomato crop grown in southern Italy. Euroinvent 1 (1): 3-10.

Chaves A, Shea D, Cope WG, 2007. Environmental fate of chlorothalonil in a Costa Rican banana plantation. Chemosphere 69 (7): 1166-1174. http://dx.doi.org/10.1016/j.chemosphere.2007.03.048

Cooke LR, Schepers HTAM, Hermansen A, Bain RA, Bradshaw NJ, Ritchie F, Shaw DS, Evenhuis A, Kessel GJT, Wander JGN, et al. 2011. Epidemiology and integrated control of potato late blight in Europe. Potato Res 54 (2): 183-222. http://dx.doi.org/10.1007/s11540-011-9187-0

Czaczyk Z, 2012. Influence of air flow dynamics on droplet size in conditions of air assisted sprayers. Atomization Spray 22 (4): 275–282. http://dx.doi.org/10.1615/AtomizSpr.2012003788

Dammer K, Wolny J, Giebel A, 2008. Estimation of the leaf area index in cereal crops for variable rate fungicide spraying. Eur J Agron 28: 351-360. http://dx.doi.org/10.1016/j.eja.2007.11.001

Dammer KH, Thöle H, Volk T, Hau B, 2009. Variable-rate fungicide spraying in real time by combining a plant cover sensor and a decision support system. Precis Agric 10 (5): 431-442. http://dx.doi.org/10.1007/s11119-008-9088-7

Dammer KH, Hamdorf A, Ustyuzhanin A, Schirrmann M, Leithold P, Leithold H, Tackenberg M, 2015. Target-orientated and precise, real-time fungicide application in cereals. Landtechnik 70 (2): 31-43.

Derksen RC, Frantz J, Ranger CM, Locke JC, Zhu H, Krause CR, 2008. Comparing greenhouse handgun delivery to poinsettias by spray volume and quality. T ASABE 51: 27-33. http://dx.doi.org/10.13031/2013.24214

Duvauchelle S, Dubois L, 2001. The evolution of the foliar late blight resistance of the cultivar- Two years of trials in northern France (1999-2000) – The main results 2001. PAV-Special Report 7: 239-244.

EU, 2012a. Commission Regulation (EU) No. 270/2012 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for amidosulfuron, azoxystrobin, bentazone, bixafen, cyproconazole, fluopyram, imazapic, malathion, propiconazole and spinosad in or on certain products. 26 March 2012. Official Journal EU 89: 5-63.

EU 2012b. Commission Regulation (EU) No. 441/2012 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for bifenazate, bifenthrin, boscalid, cadusafos, chlorantraniliprole, chlorothalonil, clothianidin, cyproconazole, deltamethrin, dicamba, difenoconazole, dinocap, etoxazole, fenpyroximate, flubendiamide, fludioxonil, glyphosate, metalaxyl-M, meptyldinocap, novaluron, thiamethoxam, and triazophos in or on certain products. 24 May 2012. Official Journal EU 135: 4-56.

Farnham C, Nakao M, Nabeshima M, Mizuno T, 2015. Effect of water temperature on evaporation of mist sprayed from a nozzle. J Heat Island Inst Int 10: 35-44.

Feller C, Bleiholder L, Buhr H, Hack M, Hess M, Klose R, Meier U, Stauss R, Van den Boom T, Weber E, 1995. Phänologische Entwicklungsstadien von Gemüsepflanzen. I. Zwiebel-, Wurzel-, Knollen- und Blattgemüse. Nachrichtenbl Deut Pflanzenschutz 47 (9): 217-232.

Fortes R, Prieto MH, García-Martín A, Córdoba A, Martínez L, Campillo C, 2015. Using NDVI and guided sampling to develop yield prediction maps of processing tomato crop. Span J Agric Res 13 (1): e02-004. http://dx.doi.org/10.5424/sjar/2015131-6532

Friso D, Baldoin C, 2015. Mathematical modelling and experimental assessment of agrochemical drift using a wind tunnel. Appl Math Sci 9 (110): 5451-5463.

Fry WE, 1998. Vegetable crops. Late blight of potatoes and tomatoes. Cornell Univ Coop Ext, NY State, USA. http://vegetablemdonline.ppath.cornell.edu/factsheets/Potato_LateBlt.htm. [7-1998].

Fry W, 2008. Phytophthora infestans: The plant (and R gene) destroyer. Mol Plant Pathol 9 (3): 385-402. http://dx.doi.org/10.1111/j.1364-3703.2007.00465.x

Garau VL, Angioni A, Del Real AA, Russo M, Cabras P, 2002. Disappearance of azoxystrobin, pyrimethanil, cyprodinil, and fludioxonil on tomatoes in a greenhouse. J Agr Food Chem 50 (7): 1929-1932. http://dx.doi.org/10.1021/jf011219f

Godwin JR, Bartlett DW, Heaney SP, 1999. Azoxystrobin: implications of biochemical mode of action, pharmacokinetics and resistance management for spray programmes against Septoria diseases of wheat. In: Septoria on cereals: A study of pathosystems; Lucas JA, Bowyer P, Anderson HM (eds.). pp: 299-315. CABI Publ.

Green JM, Hazen JL, 1998. Understanding and using adjuvant properties to enchance pesticide activity. Proc Fifth Int Symp on Adjuvants for Agrochemicals, Vol 1; McMullan PM (ed), Memphis (TN), August 17–21. pp: 25-36.

Grinstein A, Riven Y, Elad Y 1997. Improved chemical control of botrytis blight in roses. Phytoparasitica 25: 87-92. http://dx.doi.org/10.1007/BF02980335

Hamm PB, Clough GH, 1999. Comparison of application methods on deposition and redistribution of chlorothalonil in a potato canopy and potential for control of late blight. Plant Dis 83 (5): 441-444. http://dx.doi.org/10.1094/PDIS.1999.83.5.441

Hansen JG, Andersson B, Hermansen A, 1995. NEGFRY – A system for scheduling chemical control of late blight in potatoes. Proc Phytophthora 150 Sesquicentennial Sci Conf; Dowley LJ, Bannon E, Cooke LR, Keane T, O'Sullivan E, (eds), Dublin, Ireland, Sept 10-16. pp: 201-208.

Harrison JG, 1992. Effects of the aerial environment on late blight of potato foliage - A review. Plant Pathol 41 (4): 384-416. http://dx.doi.org/10.1111/j.1365-3059.1992.tb02435.x

Heaney SP, Knight SC, 1994. ICIA 5504: A novel broad-spectrum systemic fungicide for use on fruit, nut and horticultural crops. Proc Brighton Crop Protection Conference – Pests and Diseases, Brighton (UK), Nov 21-24. pp: 509-516.

Holloway PJ, Ellis B, Webb DA, Western NM, Tuck CR, Hayes AL, Miller PCH, 2000. Effects of some agricultural tank-mix adjuvants on the deposition efficiency of aqueous sprays on foliage. Crop Prot 19 (1): 27-37. http://dx.doi.org/10.1016/S0261-2194(99)00079-4

Holterman HJ, 2003. Kinetics and evaporation of water drops in air. IMAG report 2003-12/ Wageningen UR. IMAG, Wageningen, NL. 67 pp. http://www.holsoft.nl/idefics/pdf/kinevap.pdf.

Holterman HJ, Van De Zande JC, Porskamp HAJ, Huijsmans JFM, 1997. Modelling spray drift from boom sprayers. Comput Electron Agr 19 (1): 1-22. http://dx.doi.org/10.1016/S0168-1699(97)00018-5

Jensen PK, Nielsen BJ, 2008. Influence of volume rate and nozzle angling on control of potato late blight with flat fan, pre-orifice and air-induction nozzles. In: Effects of climate change on plants: Implications for agriculture; Halford N, Jones HD, Lawlor D (eds). pp: 447-452. Assoc Appl Biol, UK.

Kleinhenze B, Falke K; Kakau J, Rossberg D, 2007. SIMBLIGHT1 – A new model to predict first occurrence of potato late blight. Bull OEPP 37: 339-343. http://dx.doi.org/10.1111/j.1365-2338.2007.01135.x

Kudsk P, Mathiassen SK, Kirknel E, 1991. Influence of formulations and adjuvants on the rainfastness of maneb and mancozeb on pea and potato. Pestic Sci 33 (1): 57-71. http://dx.doi.org/10.1002/ps.2780330107

Lefebvre A, 1989. Atomization and sprays. Tayor & Francis, US. 423 pp.

Lehoczki‐Krsjak S, Varga M, Mesterházy Á, 2015. Distribution of prothioconazole and tebuconazole between wheat ears and flag leaves following fungicide spraying with different nozzle types at flowering. Pest Manag Sci 71 (1): 105-113. http://dx.doi.org/10.1002/ps.3774

Lehotay SJ, Son KA, Kwon H, Koesukwiwat U, Fu W, Mastovska K, Hoh E, Leepipatpiboon N, 2010. Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J Chromatogr A 16: 2548-2560. http://dx.doi.org/10.1016/j.chroma.2010.01.044

Leistra M, Van Den Berg F, 2007. Volatilization of parathion and chlorothalonil from a potato crop simulated by the PEARL model. Environ Sci Technol 41 (7): 2243-2248. http://dx.doi.org/10.1021/es0627242

Lichiheb N, Personne E, Bedos C, Barriuso E, 2014. Adaptation of a resistive model to pesticide volatilization from plants at the field scale: Comparison with a dataset. Atmos Environ 83: 260-268. http://dx.doi.org/10.1016/j.atmosenv.2013.11.004

Llorens J, Gil E, Llop J, 2011. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: Advances to improve pesticide application methods. Sensors 11 (2): 2177-2194. http://dx.doi.org/10.3390/s110202177

Mendiburu F, 2013. Agricolae: Statistical procedures for agricultural research. R Package Version 1.1-4. http://CRAN.R-project.org/package=agricolae

Menéndez J, Bastida F, 2003. The correlation of the spraying volume with herbicide adherence and herbicide penetration in glyphosate treatments. Comm Agr Appl Biol Sci 69 (4): 815-820.

Mitani S, 2001. RANMAN® (cyazofamid) - A novel fungicide for the control of oomycete plant diseases. Agrochemicals Japan 78: 17-20.

Monadjemi S, El Roz M, Richard C, Ter Halle A, 2011. Photoreduction of chlorothalonil fungicide on plant leaf models. Environ Sci Technol 45 (22): 9582-9589. http://dx.doi.org/10.1021/es202400s

Nikolov AD, Wasan DT, Koczo K, Policello GA, 1998. Mechanisms for superspreading: role of surface tension gradient and surfactant adsorption. Proc Fifth Int Symp on Adjuvants for Agrochemicals, Vol 1; McMullan PM (ed), Memphis (TN), August 17–21. pp: 125-130.

Olanya OM, Starr GC, Honeycutt CW, Griffin TS, Lambert DH, 2007. Microclimate and potential for late blight development in irrigated potato. Crop Prot 26 (9): 1412-1421. http://dx.doi.org/10.1016/j.cropro.2006.12.002

Payá P, Anastassiades M, Mack D, Sigalova I, Tasdelen B, Oliva J, Barba A, 2007. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal Bioanal Chem 389: 1697-1714. http://dx.doi.org/10.1007/s00216-007-1610-7

Prokop M, Veverka K, 2006. Influence of droplet spectra on the efficiency of contact fungicides and mixtures of contact and systemic fungicides. Plant Prot Sci 42: 26-33.

Qin CF, He MH, Chen FP, Zhu W, Yang LN, Wu EJ, Guo ZL, Shang LP, Zhan J, 2016. Comparative analyses of fungicide sensitivity and SSR marker variations indicate a low risk of developing azoxystrobin resistance in Phytophthora infestans. Scientific reports 6: 20483. http://dx.doi.org/10.1038/srep20483

Ramsdale BK, Messersmith CG, 2001. Nozzle, spray volume, and adjuvant effects on carfentrazone and imazamox efficacy 1. Weed Technol 15 (3): 485-491. http://dx.doi.org/10.1614/0890-037X(2001)015[0485:NSVAAE]2.0.CO;2

Ratajkiewicz H, Kierzek R, Karolewski Z, Wachowiak M, 2009. The effect of adjuvants, spray volume and nozzle type on azoxystrobin efficacy against Leptosphaeria maculans and L. biglobosa on winter oilseed rape. J Plant Prot Res 49(4): 440-445. http://dx.doi.org/10.2478/v10045-009-0070-9

Reynolds KL, Reilly CC, Hotchkiss MW, 1994. Removal of fentin hydroxide from pecan seedlings by simulated rain. Plant Dis 78 (9): 857-860. http://dx.doi.org/10.1094/PD-78-0857

Rodrigues ET, Moreno A, Mendes T, Palmeira C, Pardal MÂ, 2015. Biochemical and physiological responses of Carcinus maenas to temperature and the fungicide azoxystrobin. Chemosphere 132: 127-134. http://dx.doi.org/10.1016/j.chemosphere.2015.03.011

Ryckaert B, Spanoghe P, Haesaert G, Heremans B, Isebaert S, Steurbaut W, 2007. Quantitative determination of the influence of adjuvants on foliar fungicide residues. Crop Prot 26(10): 1589-1594. http://dx.doi.org/10.1016/j.cropro.2007.02.011

Sanjika TM, Jayasuriya HPW, Salokhe VM, 2008. An investigation into the effect of nozzle-canopy interaction on spray deposition: a study to optimize nozzle selection and minimize chemical use in crop production. Environ Sci Technol 3 (2): 28-34.

Schirra M, Palma A, Barberis A, Angioni A, Garau VL, Cabras P, D'Aquino S, 2010. Postinfection activity, residue levels, and persistence of azoxystrobin, fludioxonil, and pyrimethanil applied alone or in combination with heat and imazalil for green mold control on inoculated oranges. J Agr Food Chem 58 (6): 3661-3666. http://dx.doi.org/10.1021/jf904521f

Schönherr J, Baur P, Buchholz A, 1999. Modelling foliar penetration: its role in optimising pesticide delivery. In: Pesticide chemistry and bioscience, The food-environment challenge; Brooks GT, Roberts TR (eds.), pp: 134-154. The Royal Society of Chemistry, Cambridge. http://dx.doi.org/10.1533/9781845698416.3.134

Sharma KK, 2000. Influence of meteorological factors on potato late blight development in North-Western plains of India. J Indian Potato Assoc 27: 1-3.

Stevens PJG, Gaskin RE, Hong S, Zabkiewicz JA, 1991. Contributions of stomatal infiltration and cuticular penetration to enhancements of foliar uptake by surfactants. Pestic Sci 33: 371-382. http://dx.doi.org/10.1002/ps.2780330310

Szpyrka E, Sadło S, 2009. Disappearance of azoxystrobin, cyprodinil, and fludioxonil residues on tomato leaves in a greenhouse. J Plant Prot Res 49 (2): 204-208. http://dx.doi.org/10.2478/v10045-009-0030-4

Taylor MC, Hardwick NV, Bradshaw NJ, Hall AM, 2003. Relative performance of five forecasting schemes for potato late blight (Phytophthora infestans) I. Accuracy of infection warnings and reduction of unnecessary, theoretical, fungicide applications. Crop Prot 22 (2): 275-283. http://dx.doi.org/10.1016/S0261-2194(02)00148-5

Taylor P, 2011. The wetting of leaf surfaces. Curr Opin Colloid In 16 (4): 326-334. http://dx.doi.org/10.1016/j.cocis.2010.12.003

Ter Halle A, Drncova D, Richard C, 2006. Phototransformation of the herbicide sulcotrione on maize cuticular wax. Environ Sci Technol 40 (9): 2989-2995. http://dx.doi.org/10.1021/es052266h

Thelen KD, Jackson EP, Penner D, 1995. The basis for the hard-water antagonism of glyphosate activity. Weed Sci 43: 541-548.

Töfoli JG, Domingues RJ, de Melo PCT, Ferrari JT, 2014. Effect of simulated rain on the efficiency of fungicides in potato late blight and early blight control. Semina: Ciências Agrárias 35 (6): 2977-2990. http://dx.doi.org/10.5433/1679-0359.2014v35n6p2977

Trout TJ, Johnson LF, Gartung J, 2008. Remote sensing of canopy cover in horticultural crops. HortScience 43 (2): 333-337.

Ullrich J, Schrödter H, 1966. Das Problem der Vorhersage des Auftretens der Kartoffelkrautfaule (Phytophthora infestans) und die Möglichkeit seiner Lösung durch eine Negativprognose. Nachrichtenblatt Deut Pflanzenschutz 3: 33-40.

Walklate PJ, Cross JV, 2013. Regulated dose adjustment of commercial orchard spraying products. Crop Prot 54: 65-73. http://dx.doi.org/10.1016/j.cropro.2013.07.019

Walklate PJ, Cross JV, Richardson B, Baker DE, Murray RA, 2003. A generic method of pesticide dose expression: Application to broadcast spraying of apple trees. Ann Appl Biol 143: 11-23. http://dx.doi.org/10.1111/j.1744-7348.2003.tb00264.x

Warnes GR, Bolker B, Lumley T, Johnson RC, 2015. Contributions from Randall C. Johnson are Copyright SAIC-Frederick, Inc. Funded by the Intramural Research Program, of the NIH, National Cancer Institute and Center for Cancer Research under NCI Contract NO1-CO-12400. Gmodels: Various R Programming Tools for Model Fitting. R package version 2.16.2. https://CRAN.R-project.org/package=gmodels.

Washington JR, 1997. Relationship between the spray droplet density of two protectant fungicides and the germination of Mycosphaerella fijiensis ascospores on banana leaf surfaces. Pestic Sci 50: 233-239.

Weisser PY, Koch H, 2002. Expression of dose rate with respect to orchard sprayer function. Aspect Appl Biol 66: 353-358.

Wise JC, Jenkins PE, Schilder MC, Vandervoort C, Isaacs R, 2010. Sprayer type and water volume influence pesticide deposition and control of insect pests and diseases in juice grapes. Crop Prot 29: 378-385. http://dx.doi.org/10.1016/j.cropro.2009.11.014

Wong FP, Wilcox WF, 2001. Comparative physical modes of action of azoxystrobin, mancozeb, and metalaxyl against Plasmopara viticola (grapevine downy mildew). Plant Dis 85 (6): 649-656. http://dx.doi.org/10.1094/PDIS.2001.85.6.649

Zhu H, Dorner JW, Rowland DL, Derksen RC, Ozkan HE, 2004. Spray penetration into peanut canopies with hydraulic nozzle tips. Biosyst Eng 87 (3): 275-283. http://dx.doi.org/10.1016/j.biosystemseng.2003.11.012

Published
2016-08-31
How to Cite
Ratajkiewicz, H., Kierzek, R., Raczkowski, M., Hołodyńska-Kulas, A., Łacka, A., Wójtowicz, A., & Wachowiak, M. (2016). Effect of the spray volume adjustment model on the efficiency of fungicides and residues in processing tomato. Spanish Journal of Agricultural Research, 14(3), e1007. https://doi.org/10.5424/sjar/2016143-9339
Section
Plant protection