An innovative multivariate tool for fuel consumption and costs estimation of agricultural operations

  • Mirko Guerrieri CREA, Unità di ricerca per l’ingegneria agraria. Via della Pascolare 16, 00015 Monterotondo scalo (Roma)
  • Marco Fedrizzi CREA, Unità di ricerca per l’ingegneria agraria. Via della Pascolare 16, 00015 Monterotondo scalo (Roma)
  • Francesca Antonucci CREA, Unità di ricerca per l’ingegneria agraria. Via della Pascolare 16, 00015 Monterotondo scalo (Roma)
  • Federico Pallottino CREA, Unità di ricerca per l’ingegneria agraria. Via della Pascolare 16, 00015 Monterotondo scalo (Roma)
  • Giulio Sperandio CREA, Unità di ricerca per l’ingegneria agraria. Via della Pascolare 16, 00015 Monterotondo scalo (Roma)
  • Mauro Pagano CREA, Unità di ricerca per l’ingegneria agraria. Via della Pascolare 16, 00015 Monterotondo scalo (Roma)
  • Simone Figorilli CREA, Unità di ricerca per l’ingegneria agraria. Via della Pascolare 16, 00015 Monterotondo scalo (Roma)
  • Paolo Menesatti CREA, Unità di ricerca per l’ingegneria agraria. Via della Pascolare 16, 00015 Monterotondo scalo (Roma)
  • Corrado Costa CREA, Unità di ricerca per l’ingegneria agraria. Via della Pascolare 16, 00015 Monterotondo scalo (Roma)
Keywords: digital agriculture, precision farming, predictive modelling, machine efficiency, economical assessments

Abstract

The estimation of operating costs of agricultural and forestry machineries is a key factor in both planning agricultural policies and farm management. Few works have tried to estimate operating costs and the produced models are normally based on deterministic approaches. Conversely, in the statistical model randomness is present and variable states are not described by unique values, but rather by probability distributions. In this study, for the first time, a multivariate statistical model based on Partial Least Squares (PLS) was adopted to predict the fuel consumption and costs of six agricultural operations such as: ploughing, harrowing, fertilization, sowing, weed control and shredding. The prediction was conducted on two steps: first of all few initial selected parameters (time per surface-area unit, maximum engine power, purchase price of the tractor and purchase price of the operating machinery) were used to estimate the fuel consumption; then the predicted fuel consumption together with the initial parameters were used to estimate the operational costs. Since the obtained models were based on an input dataset very heterogeneous, these resulted to be extremely efficient and so generalizable and robust. In details the results show prediction values in the test with r always ≥ 0.91. Thus, the approach may results extremely useful for both farmers (in terms of economic advantages) and at institutional level (representing an innovative and efficient tool for planning future Rural Development Programmes and the Common Agricultural Policy). In light of these advantages the proposed approach may as well be implemented on a web platform and made available to all the stakeholders.

Downloads

Download data is not yet available.

References

Abramo G, Costa C, D'Angelo CA, 2015. A multivariate stochastic model to assess research performance. Scientometrics 102: 1755-1772. http://dx.doi.org/10.1007/s11192-014-1474-5

ASAE D497.4, 2000. Agricultural machinery management data. In: ASAE Standards, pp: 350-357. Am Soc Agric Biol Eng, St. Joseph, MI, USA.

ASAE D497.4, 2003. Agricultural machinery management. In: ASAE Standards, pp: 373-380. Am Soc Agric Biol Eng, St. Joseph, MI, USA.

ASAE D497.5, 2006. Agricultural machinery management data. In: ASAE Standards, pp: 390-398. Am Soc Agric Biol Eng, St. Joseph, MI, USA.

ASAE D497.6, 2009. Agricultural machinery management data. In: ASAE Standards, pp: 360-367. Am Soc Agric Biol Eng, St. Joseph, MI, USA.

ASAE EP496.2, 2003. Agricultural machinery management. In: ASAE Standards, pp: 367-372. Am Soc Agric Biol Eng, St. Joseph, MI, USA.

ASAE EP496.3, 2006. Agricultural machinery management. In: ASAE Standards, pp: 384-390. Am Soc Agric Biol Eng, St. Joseph, MI, USA.

Biondi P. (Ed.). 1999. Meccanica agraria: le macchine agricole. UTET, Torino (Italy). pp: 547-561.

Bochtis DD, Sørensen CG, Busato P, Hameed IA, Rodias E, Green O, Papadakis G, 2010. Tramline establishment in controlled traffic farming based on operational machinery cost. Biosyst Eng 107: 221-231. http://dx.doi.org/10.1016/j.biosystemseng.2010.08.004

Camarena EA, Gracia C, Cabrera Sixto JM, 2004. A mixed integer linear programming machinery selection model for multifarm systems. Biosyst Eng 87: 145-154. http://dx.doi.org/10.1016/j.biosystemseng.2003.10.003

Chong IG, Jun CH, 2005. Performance of some variable selection methods when multicollinearity is present. Chemom Intell Lab Syst 781: 103-112. http://dx.doi.org/10.1016/j.chemolab.2004.12.011

Costa C, Menesatti P, Spinelli R, 2012. Performance modelling in forest operations through partial least square regression. Silva Fennica 46 (2): 241-252. http://dx.doi.org/10.14214/sf.57

Costa C, Antonucci F, Boglione C, Menesatti P, Vandeputte M, Chatain B, 2013. Automated sorting for size, sex and skeletal anomalies of cultured seabass using external shape analysis. Aquacult Eng 52: 58-64. http://dx.doi.org/10.1016/j.aquaeng.2012.09.001

Cutini M, Costa C, Bisaglia C, 2016. Development of a simplified method for evaluating agricultural tractor's operator whole body vibration. J Terramechanics 63: 23-32. http://dx.doi.org/10.1016/j.jterra.2015.11.001

De Toro A, Gunnarsson C, Lundin G, Jonsson N, 2012. Cereal harvesting - Strategies and costs under variable weather conditions. Biosyst Eng 111: 429-439. http://dx.doi.org/10.1016/j.biosystemseng.2012.01.010

Febbi P, Menesatti P, Costa C, Pari L, Cecchini M, 2015. Automated determination of poplar chip size distribution based on combined image and multivariate analyses. Biomass Bioenerg 73: 1-10. http://dx.doi.org/10.1016/j.biombioe.2014.12.001

Fedrizzi M, Sperandio G, Guerrieri M, Pagano M, Costa C, Puri D, Fanigliulo R, Bazzoffi P, 2015. Economic competitiveness gap related to the application of the conditionality standards on agricultural farms: evaluation methodology. Ital J Agron 10 (s1): 696.

Forina M, Oliveri P, Lanteri S, Casale M, 2008. Class-modeling techniques, classic and new, for old and new problems. Chemom Intell Lab Syst 932: 132-48. http://dx.doi.org/10.1016/j.chemolab.2008.05.003

Fountas S, Sorensen CG, Tsiropoulos Z, Cavalaris C, Liakos V, Gemtos T, 2015. Farm machinery management information system. Comput Electron Agr 110: 131-138. http://dx.doi.org/10.1016/j.compag.2014.11.011

Gunnarsson C, Hansson PA, 2004. Optimisation of field machinery for an arable farm converting to organic farming. Agric Syst 80: 85-103. http://dx.doi.org/10.1016/j.agsy.2003.06.005

Happe K, Kellermann K, Balmann A, 2006. Agent-based analysis of agricultural policies: an illustration of the agricultural policy simulator AgriPoliS, its adaptation and behavior. Ecol Soc 111: 49.

Harrop Galvao RK, Ugulino Araujo MC, Emıdio Jose G, Coelho Pontes MJ, Cirino Silva E, Bezerra Saldanha TC, 2005. A method for calibration and validation subset partitioning. Talanta 67: 736-740. http://dx.doi.org/10.1016/j.talanta.2005.03.025

Infantino A, Aureli G, Costa C, Taiti C, Antonucci F, Menesatti P, Pallottino F, De Felice S, D'Egidio MG, Mancuso S, 2015. Potential application of PTR-TOFMS for the detection of deoxynivalenol DON in durum wheat. Food Control 57: 96-104. http://dx.doi.org/10.1016/j.foodcont.2015.03.047

Lazzari M, Mazzetto F, 1996. A PC model for selecting multicropping farm machinery systems. Comput Electron Agr 14: 43-59. http://dx.doi.org/10.1016/0168-1699(95)00036-4

Manfredi E, 1971. Raccomandazione A.I.G.R., IIIa sezione "denominazione, simbolo e unità di misura delle grandezza fondamentali relative all'impiego delle macchine in agricoltura, con particolare riguardo alle colture erbacee". Rivista di Ingegneria Agraria 2 (4): 258-260.

Søgaard HT, Sørensen CG, 2004. A model for optimal selection of machinery sizes within the farm machinery system. Biosyst Eng 89: 13-28. http://dx.doi.org/10.1016/j.biosystemseng.2004.05.004

Spinelli R, Magagnotti N, Picchi G, 2011. Annual use, economic life and residual value x of cut to-length harvesting machines. J Forest Econ 17: 378-387. http://dx.doi.org/10.1016/j.jfe.2011.03.003

Taiti C, Costa C, Menesatti P, Comparini D, Bazihizina N, Azzarello E, Masi E, Mancuso S, 2015. Class-modeling approach to PTR-TOFMS data: a peppers case study. J Sci Food Agr 95: 1757-1763. http://dx.doi.org/10.1002/jsfa.6761

Verani S, Sperandio G, Picchio R, Marchi E, Costa C, 2015. Sustainability assessment of a self-consumption wood-energy chain on small scale for heat generation in Central Italy. Energies 8: 5182-5197. http://dx.doi.org/10.3390/en8065182

Williams PC (Ed.), 1987. Variables affecting near-infrared reflectance spectroscopic analysis. In: Near-infrared technology in the agricultural and food industries; Williams P, Norris K (Eds.), pp: 43-166. Am Assoc Cereal Chem, St Paul, USA.

Wold S, Sjostrom M, Erikssonn L, 2001. PLS-regression: A basic tool of chemometrics. Chemom Intell Lab Syst 58: 109-130. http://dx.doi.org/10.1016/S0169-7439(01)00155-1

Published
2017-01-20
How to Cite
Guerrieri, M., Fedrizzi, M., Antonucci, F., Pallottino, F., Sperandio, G., Pagano, M., Figorilli, S., Menesatti, P., & Costa, C. (2017). An innovative multivariate tool for fuel consumption and costs estimation of agricultural operations. Spanish Journal of Agricultural Research, 14(4), e0209. https://doi.org/10.5424/sjar/2016144-9490
Section
Agricultural engineering