The effects of ultrasonic pretreatment and structural changes during the osmotic dehydration of the ˈStarkingˈ apple (Malus domestica Borkh)

  • M. E. Rosas-Mendoza Departamento Ingeniería y Tecnología, FES-Cuautitlán UNAM.
  • J. L. Fernández-Muñoz Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional, Legaria 694. Colonia Irrigación, 11500 México, D. F.
  • J. L. Arjona-Román Laboratorio de análisis térmico y estructural de materiales y alimentos. Unidad Multidisciplinaria de Investigación. FES-Cuautitlán UNAM.
Keywords: cavitation, dehydration kinetics, effective diffusion coefficient, molecular structure, solid gain, water loss

Abstract

During the osmotic dehydration (OD) of fruit, the cell membrane displays a high resistance to mass transfer, thereby reducing the dehydration rate. To reduce thermal damage to cell membranes, alternative methods have recently been introduced to reduce the initial moisture content and/or modify the structure of fruit tissue. The aim of this work was to evaluate the effects of an ultrasound (US) pretreatment for OD on the effective diffusion coefficients and to observe the changes in the molecular structure of Starking apple cubes by Fourier-transform infrared spectroscopy (FTIR) during a 3 h process using a 45°Bx sucrose solution at 60°C. In the pretreatment step, apple samples were immersed in an ultrasonic bath at 45 kHz for 20 min. The effective diffusion coefficients for water (Dew) and solids (Des) were calculated from the observed osmotic kinetics according to Fick´s second law for the transient state. The solids coefficients were higher than the water coefficients in both processes due to the concentration difference (Des= 7.7×10-9 and 9.7×10-9 m2 s-1 for ODUS).The structural changes were determined by FTIR by measuring the molecular vibration frequency for sucrose. The 1,500–900 cm-1 region of the infrared spectra was used to monitor the effect of sucrose concentration on fruit structure. We observed that the first bonds formed were C-H and C-O-C stretching (at 920 and 1,129 cm−1, respectively) in the sucrose skeleton and glycoside bonds among sucrose molecules. The water concentration affected the diffusion coefficient significantly due to its dependence on the physical structure of the food.

Downloads

Download data is not yet available.

References

Azuara E, Cortes R, Garcia HS, Beristain CI, 1992. Kinetic model for osmotic dehydration and its relationship with Fick’s second law. Int J Food Sci Tech 27: 409-418. http://dx.doi.org/10.1111/j.1365-2621.1992.tb01206.x

Chiralt A, Fito P, 2003. Transport mechanisms in osmotic dehydration. The role of the structure. Food Sci Tech Int 9: 179-186. http://dx.doi.org/10.1177/1082013203034757

Crank J, 1975. Mathematics of diffusion. Oxford Univ Press, London, UK. 414 pp.

Erle U, Schubert H, 2001. Combined osmotic and microwave vacuum dehydration of apples and strawberries. J Food Eng 49: 193-199. http://dx.doi.org/10.1016/S0260-8774(00)00207-7

Fernandes FAN, Galla MI, Rodrigues S, 2008. Ultrasound as pre-treatment for drying of pineapple. LWT-Food Sci Technol 41: 604-610. http://dx.doi.org/10.1016/j.lwt.2007.05.007

Fuente-Blanco S, Sarabia, ERF, Acosta-Aparicio VM, Blanco- Blanco A, Gallego-Juarez JA, 2006. Food drying process by power ultrasound. Ultrason Sonochem 44: e523-e527.

Griffiths PR, de Haseth JA, 1986. Fourier transform infrared spectroscopy. John Wiley & Sons, NY. 536 pp.

Iqbal M, Saeeda A, Iqbal ZS, 2009. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J Hazard Mater 164: 161-171. http://dx.doi.org/10.1016/j.jhazmat.2008.07.141 PMid:18799258

Ka?uráková M, Mathlouthi M, 1996. FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond. Carbohydr Res 284: 145-157. http://dx.doi.org/10.1016/0008-6215(95)00412-2

Kaymak-Ertekin F, Sultanoglu M, 2000. Modelling of mass transfer during osmotic dehydration of apple. J Food Eng 46: 243-250. http://dx.doi.org/10.1016/S0260-8774(00)00084-4

Lerici CR, Pinnavaia G, Rosa MD, Bartolucci L, 1985. Osmotic dehydration of fruit: influence of osmotic agents on drying behavior and product quality. J Food Sci 50: 1217-1226. http://dx.doi.org/10.1111/j.1365-2621.1985.tb10445.x

Martinez-Monzo J, Calero A, Ayala A, Chiralt A, Fito P, 2000. Effect of blanching on osmotic dehydration kinetics of mango. Proc Eighth Int Cong Eng and Food. Puebla, Mexico, April 9-13. pp: 1264-1269.

Mason TJ, Paniwnyk L, Lorimer JP, 1996. The uses of ultrasound in food technology Ultrason Sonochem 3: S253-S260. http://dx.doi.org/10.1016/S1350-4177(96)00034-X

Povey JW, Mason T (eds), 1998. Ultrasound in food processing. Blackie Acad Prof, London, UK. 282 pp.

Rastogi NK, Raghavarao KSMS, 1996. Kinetics of osmotic dehydration under vacuum. LWT-Food Sci Technol 29: 669-672. http://dx.doi.org/10.1006/fstl.1996.0103

Rastogi NK, Raghavarao KSMS, 2004. Mass transfer during osmotic dehydration of pineapple: considering Fickian diffusion in cubical configuration. LWT-Food Sci Technol 37: 43-47. http://dx.doi.org/10.1016/S0023-6438(03)00131-2

Rastogi NK, Raghavarao KSMS, Niranjan K, Knorr D, 2002. Recent developments in osmotic dehydration: methods to enhance mass transfer. Trends Food Sci Technol 13: 48-59. http://dx.doi.org/10.1016/S0924-2244(02)00032-8 PMid:21299575

Rodrigues S, Fernandes FAN, 2007a. Ultrasound in fruit processing. In: New food engineering research trends (Urwaye AP, ed.). Nova Sci Publ, Hauppauge, NY. pp: 103-135.

Rodrigues S, Fernandes FAN, 2007b. Use of ultrasound as pretreatment for dehydration of melons. Drying Technol 25: 1791-1796. http://dx.doi.org/10.1080/07373930701595409

Savitzky A, Golay MJE, 1964. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36: 1627-1639. http://dx.doi.org/10.1021/ac60214a047

Singh B, Kumar A, Gupta AK, 2007. Study of mass transfer kinetics and effective diffusivity during osmotic dehydration of carrot cubes. J Food Eng 79: 471-480. http://dx.doi.org/10.1016/j.jfoodeng.2006.01.074

Sinha NK, 2006 Apples. In: Handbook of fruits and fruit processing (Hui YH, ed.) Blackwell Publ, IA, USA. pp: 265-278. http://dx.doi.org/10.1002/9780470277737.ch16

Smith BC, 1996. Fundamentals of Fourier transform infrared spectroscopy. CRC, WA, USA. 198 pp.

Souza JS, Medeiros MFD, Magalhães MMA, Rodrigues S, Fernandes FAN, 2007. Optimization of osmotic dehydration of tomatoes in a ternary system followed by air-drying. J Food Eng 83: 501-509. http://dx.doi.org/10.1016/j.jfoodeng.2007.03.038

Tarleton ES, Wakeman RJ, 1998. Ultrasonically assisted separation process. In: Ultrasounds in food processing (Povey JW, Mason T, eds). Blackie Acad Prof, London, UK. pp: 193-218.

Van de Voort FR, 1992. Fourier transforms infrared spectroscopy applied to food analysis. Food Res Int 25: 397-403. http://dx.doi.org/10.1016/0963-9969(92)90115-L

Wolkers WF, Oliver AE, Tablin F, Crowe JH, 2004. A Fourier-transform infrared spectroscopy study of sugar glasses. Carbohydr Res 339: 1077-1085. http://dx.doi.org/10.1016/j.carres.2004.01.016

Published
2012-03-01
How to Cite
Rosas-Mendoza, M. E., Fernández-Muñoz, J. L., & Arjona-Román, J. L. (2012). The effects of ultrasonic pretreatment and structural changes during the osmotic dehydration of the ˈStarkingˈ apple (Malus domestica Borkh). Spanish Journal of Agricultural Research, 10(2), 299-305. https://doi.org/10.5424/sjar/2012102-158-11
Section
Agricultural engineering