Tillage effects on soil properties, crop responses and root density of sweet pepper (Capsicum annuum)

  • Rafael Grasso Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA Salto Grande, Camino al Terrible s/n, 50000 Salto
  • M. Teresa Peña-Fleitas University of Almería, Dept. Agronomy, Carretera de Sacramento s/n, La Cañada, 04120 Almería
  • Marisa Gallardo University of Almería, Dept. Agronomy, Carretera de Sacramento s/n, La Cañada, 04120 Almería CIAIMBITAL Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology, University of Almería, La Cañada, 04120 Almería
  • Rodney B. Thompson University of Almería, Dept. Agronomy, Carretera de Sacramento s/n, La Cañada, 04120 Almería CIAIMBITAL Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology, University of Almería, La Cañada, 04120 Almería
  • Francisco M. Padilla University of Almería, Dept. Agronomy, Carretera de Sacramento s/n, La Cañada, 04120 Almería CIAIMBITAL Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology, University of Almería, La Cañada, 04120 Almería
Keywords: bulk density, drainage, soil compaction, soil layer, soil matric potential, vegetable crops

Abstract

Aim of study: Soil compaction causes an increase in bulk density, resistance to penetration, low diffusion of oxygen and water in the soil. Tillage is one of the techniques to alleviate compaction. The objective of this work was to evaluate the effects of tillage on sweet pepper grown in greenhouse soil.

Area of study: The experimental work was conducted in a plastic greenhouse at the Experimental Station of the University of Almería (SE Spain).

Material and methods: The soil was ploughed with a single pass with ripper to 15 cm depth and with rotavator to 10 cm depth. The control treatment was soil untilled. Crop dry matter production and root length growth and density of sweet pepper were evaluated, in addition to soil characteristics such as bulk density, resistance to penetration and soil matric potential.

Main results: Tillage reduced soil bulk density from 1.70 to 1.60 kg L-1 in the 10-40 cm of soil depth. There was a notable reduction in irrigation (12%), total N applied (13%), drainage (91%) and N leaching (95%) in the tillage treatment. However, tillage did not improve significantly crop dry matter production and yield. The absence of tillage effect is possible due to a slight reduction in the bulk density of the soil.

Research highlights: The tillage treatment produced a notable reduction in irrigation, total N applied, drainage and N leaching when compared to the control.

Downloads

Download data is not yet available.

References

Abu-Hamdeh NH, 2003. Soil compaction and root distribution for okra as affected by tillage and vehicle parameters. Soil Till Res 74: 25-35. https://doi.org/10.1016/S0167-1987(03)00122-3

Batey T, 2009. Soil compaction and soil management - A review. Soil Use Manag 25: 335-345. https://doi.org/10.1111/j.1475-2743.2009.00236.x

Castilla N, 1986. Contribución al estudio de los cultivos enareanados en Almería. Doctoral thesis. Universidad Politecnica, Madrid.

Cochrane H, Aylmore G, 1994. The effects of plant roots on soil structure.Proc of 3rd Triennial Conf "Soils 94". Aust Soc Soil Sci Inc. (Branch WA). Nedlands, Australia. pp: 207-212.

Daddow R, Warrington G, 1983. Growth-limiting soil bulk densities as influenced by soil texture.Watershed Systems Development Group. USDA Forest Service, Fort Collins, CO, USA.

Erbach DC, Benjamin JG, Cruse RM, Elamin MA, Mukhtar S, Choi CH, 1992. Soil and corn response to tillage with paraplow. Am Soc Agric Biol Eng 35: 1347-1354. https://doi.org/10.13031/2013.28739

Erdem G, Yildirim S, Dilmac M, Cetin M, Ozgoz E, 2006. Soil tillage effects on root development pepper plant part 1 Grown inside the greenhouse. Asian J Plant Sci 5: 789-795. https://doi.org/10.3923/ajps.2006.789.795

Gallardo M, Thompson RB, Gimenez C, Padilla FM, Stockle C, 2014. Prototype decision support system based on the VegSyst simulation model to calculate crop N and water requirements for tomato under plastic cover. Irrig Sci 32: 237-253. https://doi.org/10.1007/s00271-014-0427-3

Gallardo M, Padilla FM, Peña-Fleitas MT, De Souza R, Rodríguez A, Thompson RB, 2020. Crop response of greenhouse soil-grown cucumber to total available N in a nitrate vulnerable zone. Eur J Agron 114: 125993. https://doi.org/10.1016/j.eja.2019.125993

Garcia M, Cespedes A, Perez P, Lorenzo P, 2016. El sistema de producción hortícola protegido de la provincia de Almería. IFAPA España. https://www.juntadeandalucia.es/export/drupaljda/noticias/16/07/160708_El%20Sistema%20de%20Producci%C3%B3n%20Hort%C3%ADcola%20de%20la%20Provincia%20de%20Almer%C3%ADa.pdf [Jul. 2016]

Hamblin A, 1986. The influence of soil structure on water movement, crop root growth, and water uptake. Adv Agron 38: 95-158. https://doi.org/10.1016/S0065-2113(08)60674-4

Hamza MA, Anderson WK, 2005. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Till Res 82: 121-145. https://doi.org/10.1016/j.still.2004.08.009

Iler G, Stevenson C, 1991. The effects of soil compaction on the production of processing vegetables and field crops - A review. https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/14039/lsp_7019.pdf?sequence=1&isAllowed=y [28 Feb, 1991].

Jones OR, Popham TW, 1997. Cropping and tillage systems for dryland grain production in the southern high plains. Agron J 89: 222-232. https://doi.org/10.2134/agronj1997.00021962008900020012x

Kristensen H, Thorup-Kristensen K, 2007. Effects of vertical distribution of soil inorganic nitrogen on root growth and subsequent nitrogen uptake by field vegetable crops. Soil Use Manag 23: 338-337 https://doi.org/10.1111/j.1475-2743.2007.00105.x

Lampurlanés J, Angás P, Cantero-Martinez C, 2001. Root growth, soil water content and yield of barley under different tillage systems on two soils in semiarid conditions. Field Crop Res 69: 27-40. https://doi.org/10.1016/S0378-4290(00)00130-1

Liang Y, Lin X, Yamada S, Inoue M, Inosako K, 2013. Soil degradation and prevention in greenhouse production. SpringerPlus 2: S10. https://doi.org/10.1186/2193-1801-2-S1-S10

Martinez R, 1987. Comportamiento del riego bajo enarenado en invernadero. Balances de salinidad y fertilizantes, en cultivo de pimiento y judia. Doctoral thesis. Universidad Politecnica, Madrid.

Mochizuki MJ, Rangarajan A, Bellinder R, Björkman T, Van Es HM, 2007. Overcoming compaction limitations on cabbage growth and yield in the transition to reduced tillage. HortScience 42 (7): 1690-1694. https://doi.org/10.21273/HORTSCI.42.7.1690

Mu X, Zhao Y, Liu K, Ji B, Guo H, Xue Z, Li C, 2016. Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat-maize cropping system on the North China Plain. Eur J Agr 78: 32-43. https://doi.org/10.1016/j.eja.2016.04.010

Padilla FM, Peña-Fleitas MT, Fernandez MD, Del Moral F, Thompson RB, Gallardo M, 2017. Responses of soil properties, crop yield and root growth to improved irrigation and N fertilization, soil tillage and compost addition in a pepper crop. Sci Hortic 225: 422-430. https://doi.org/10.1016/j.scienta.2017.07.035

Pareja-Sanchez E, Ramos C, Lampurlanes J, Fuentes J, Martinez C, 2017. Long-term no-till as a means to maintain soil surface structure in an agroecosystem transformed into irrigation. Soil Till Res 174: 221-230. https://doi.org/10.1016/j.still.2017.07.012

Passioura JB, 1991. Soil structure and plant growth. Aust J Soil Res 29: 717-728. https://doi.org/10.1071/SR9910717

Primavesi A, 1982. Manejo ecologico del suelo, 5th ed. El Ateneo, Sao Paulo, Brasil.

Quincke JA, Wortman CS, Mamo M, Franti T, Drijber RA, García JP, 2007. One-time tillage of no-till systems: soil physical properties, phosphorus runoff, and crop yield. Agron J 99 (4): 1104-1110. https://doi.org/10.2134/agronj2006.0321

Thompson RB, Martinez-Gaitan C, Gallardo M, Gimenez C, Fernandez MD, 2007a. Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agr Water Manag 89: 261-274. https://doi.org/10.1016/j.agwat.2007.01.013

Thompson RB, Gallarndo M, Valdez LC, Fernandez MD, 2007b. Determination of lower limits for irrigation management using in situ assessments of apparent crop water uptake made with volumetric soil water content sensors. Agr Water Manag 92: 13-28. https://doi.org/10.1016/j.agwat.2007.04.009

Thorup-Kristensen K, 2011. Strict Danish regulations on nitrogen use and how understanding vegetable crop root growth may help us improve nitrogen use efficiency. Actas Horticultura 61. http://www.sech.info/ACTAS/Acta%20n%C2%BA%2061.%20IV%20Jornadas%20del%20Grupo%20de%20Fertilizaci%C3%B3n/Conferencia%20inaugural/Strict%20Danish%20regulations%20on%20N%20use%20and%20how%20understanding%20vegetable%20crop%20root%20my%20help%20us%20improve%20NUE.pdf

Unger PW, Jones OR, 1998. Long-term tillage and cropping systems affect bulk density and penetration resistance of soil cropped to dryland wheat and grain sorghum. Soil Till Res 45 (1-2): 39-57. https://doi.org/10.1016/S0167-1987(97)00068-8

Valera-Martinez DL, Belmonte-Ureña LJ, Molina-Aiz F, Lopez-Martinez A, 2016. Greenhouse agriculture in Almeria. A comprehensive techno-economic analysis. Cajamar Caja Rural, Serie Económica 27, Almería, Spain.

Valera D, Belmonte L, Molina F, Lopez A, 2014. Los invernaderos de Almería. https://www.publicacionescajamar.es/publicacionescajamar/public/pdf/series-tematicas/economia/los-invernaderos-de-almeria-analisis.pdf [Jun. 2014].

Wang Z, Williams M, Jacobsen K, Coolong T, 2015. Impact of tillage and irrigation management on bell pepper (Capsicum annuum L.) grown in organic and conventional production systems. HortScience 50: 1694-1701. https://doi.org/10.21273/HORTSCI.50.11.1694

Whalley WR, Watts CW, Gregory AS, Mooney SJ, Clark LJ, Whitmore AP, 2008. The effect of soil strength on the yield of wheat. Plant Soil 306: 237-247. https://doi.org/10.1007/s11104-008-9577-5

Wortmann CS, Quincke JA, Drijber RA, Mamo M, Franti T, 2008. Soil microbial community change and recovery after one-time tillage of continuous no-till. Agron J 100 (6): 1681-1686. https://doi.org/10.2134/agronj2007.0317

Published
2021-06-08
How to Cite
Grasso, R., Peña-Fleitas, M. T., Gallardo, M., Thompson, R. B., & Padilla, F. M. (2021). Tillage effects on soil properties, crop responses and root density of sweet pepper (Capsicum annuum). Spanish Journal of Agricultural Research, 19(2), e0902. https://doi.org/10.5424/sjar/2021192-17004
Section
Plant production (Field and horticultural crops)