Influence of genotypes of spineless cacti on feedlot lamb carcass characteristics and meat quality

Keywords: Cactus cladodes, Consumer preference, Physicochemical parameters, Small ruminants, Tissue composition

Abstract

Aim of study: The objective of this study was to evaluate the effects of spineless cactus genotypes (Nopalea cochenillifera or Opuntia stricta) on the carcass characteristics and meat quality of feedlot lambs.

Area of study: Federal Rural University of Pernambuco, Recife, Brazil.

Material and methods: Thirty-six uncastrated male Santa Inês lambs (22.0±2.91 kg of body weight) were used in a completely randomized design, with three dietary treatments: (1) Tifton hay as exclusive roughage; (2) Nopalea spineless cactus; or (3) Opuntia spineless cactus as a partial replacement for Tifton hay; the animals were slaughtered after 86 days of feedlot.

Main results: The Nopalea and Opuntia diets increased (p<0.05) the empty body weight and the weight of the cold carcass. The cold carcass yield for lambs fed diets with spineless cactus was higher (p<0.05). The spineless cactus diets led to a greater amount (p<0.05) of internal fat and carcass fat. Spineless cactus increased the weight, yield, and fattening score of the carcasses of lambs. The meat from animals fed with spineless cactus showed higher ether extract content (p<0.05). The score attributed to meat color in the Opuntia treatment was higher (p<0.05), as well as the characteristic flavor for the Nopalea treatment.

Research highlights: Spineless cactus, regardless of the genotype, increases the weight, yield, and fattening of the carcass of feedlot lambs.

Downloads

Download data is not yet available.

References

Abdullah YA, Qudsieh RI, 2008. Carcass characteristics of Awassi ram lambs slaughtered at different weights. Livest Sci 117: 165-175. https://doi.org/10.1016/j.livsci.2007.12.020

AOAC, 1990. Official Methods of Analysis, 15th Ed. Arlington, VA, USA: Association of Official Analytical Chemists International.

Araújo CM, Batista AMV, Carvalho FFR, Silva MP, Ramos AO, Souza AP, et al., 2020. Inclusion of Opuntia stricta (Haw.) in sheep diets affects nutrition and the physicochemical characteristics of the rumen content. Rev Bras Zootec 49: e20190271. https://doi.org/10.37496/rbz4920190271

Batista AMV, Ribeiro Neto AC, Lucena RB, Santos DC, Dubeux JCB, Mustafa AF, 2009. Chemical composition and ruminal degradability of spineless cactus grown in Northeastern Brazil. Rangel Ecol Manag 62: 297-301. https://doi.org/10.2111/07-099R1.1

Campbell EMG, Sanders JO, Lunt DK, Gill CA, Taylor JF, Davis SK, et al., 2016. Adiposity, lipogenesis, and fatty acid composition of subcutaneous and intramuscular adipose tissues of Brahman and Angus crossbred cattle. J Anim Sci 94: 1415-1425. https://doi.org/10.2527/jas.2015-9954

Cardoso DB, Medeiros GR, Guim A, Azevedo PS, Suassuna JMA, Júnior DML, et al., 2021. Growth performance, carcass traits and meat quality of lambs fed with increasing levels of spineless cactus. Anim Feed Sci Technol 272: 114788. https://doi.org/10.1016/j.anifeedsci.2020.114788

Cezar MF, Souza WH, 2007. Carcaças ovinas e caprinas: obtenção, avaliação e classificação. Uberaba: Agropecuária Tropical. 147 pp.

Costa CTF, Ferreira MA, Campos JMS, Silva JL, Andrade RPX, Conceição MG, 2017. Multiple supplements containing spineless cactus enriched with urea for cattle. Acta Sci - Anim Sci 39: 363-369. https://doi.org/10.4025/actascianimsci.v39i4.34427

Costa RG, Treviño IH, Medeiros GR, Medeiros AN, Pinto TF, Oliveira RL, 2012. Effects of replacing corn with cactus pear (Opuntia ficus indica Mill) on the performance of Santa Inês lambs. Small Rumin Res 102: 13-17. https://doi.org/10.1016/j.smallrumres.2011.09.012

Hentz F, Kozloski GV, Zeni D, Brun MV, Stefanello S, 2016. Relationship between level of forage intake, blood flow and oxygen consumption by splanchnic tissues of sheep fed a tropical grass forage. J Anim Physiol Anim Nutr 5: 1-6. https://doi.org/10.1111/jpn.12519

Jobim CC, Ferreira GA, Bumbieris Junior VH, Calixto Junior M, Santos GT, 2011. Cinética de degradação ruminal dos fenos de alfafa e Tifton-85 e da silagem de milho. Semin Cienc Agrar 32: 747-758. https://doi.org/10.5433/1679-0359.2011v32n2p747

Lopes LA, Ferreira MA, Batista AMV, Maciel MV, Barbosa RA, Munhame JA, 2020. Intake, digestibility, and performance of lambs fed spineless cactus cv. Orelha de Elefante Mexicana. As-Australas J Anim Sci 33: 1284-1291. https://doi.org/10.5713/ajas.19.0328

Mirkena T, Duguma G, Haile A, Tibbo M, Okeyo AM, Wurzinger M, et al., 2010. Genetics of adaptation in domestic farm animals: a review. Liv Sci 132: 1-12. https://doi.org/10.1016/j.livsci.2010.05.003

Monteiro CCF, Ferreira MA, Véras ASC, Guido SI, Almeida MP, Silva RC, et al., 2018. A new cactus variety for dairy cows in areas infested with Dactylopius opuntiae. Anim Prod Sci 59: 479-485. https://doi.org/10.1071/AN17256

Moura MSC, Guim A, Batista AMV, Maciel MV, Cardoso DB, Lima Júnior DM, et al., 2020. The inclusion of spineless cactus in the diet of lambs increases fattening of the carcass. Meat Sci 160: 107975. https://doi.org/10.1016/j.meatsci.2019.107975

NRC, 2007. Nutrient requeriments of small ruminants, 11th Ed. National Research Council, National Academy Press, Washington, DC, USA.

Oliveira JPF, Ferreira MA, Alves AMSV, Melo ACC, Andrade IB, Urbano SA, et al., 2018. Carcass characteristics of lambs fed spineless cactus as a replacement for sugarcane. As-Australas J Anim Sci 31: 529-536. https://doi.org/10.5713/ajas.17.0375

Purchas RW, Davies AS, Abdullah AY, 1991. An objective measure of muscularity: changes with animal growth and differences between genetic lines of Southdown sheep. Meat Sci 30: 81-94. https://doi.org/10.1016/0309-1740(91)90037-Q

Regadas Filho JGL, Pereira ES, Pimentel PG, Villarroel ABS, Medeiros AN, Fontenele RM, 2013. Body composition and net energy requirements for Santa Inês lambs. Small Rumin Res 109: 107-112. https://doi.org/10.1016/j.smallrumres.2012.07.011

Ribeiro JS, Santos LL, Lima Júnior DM, Mariz TMA, Ladeira MM, Azevedo PS, et al., 2017. Spineless cactus associated with Tifton hay or sugarcane bagasse may replace corn silage in sheep diets. Trop Anim Health Prod 49: 995-1000. https://doi.org/10.1007/s11250-017-1288-6

Rodrigues GH, Susin I, Pires AV, 2008. Citrus pulp in diets for feedlot lambs: carcass characteristics and meat quality. Rev Bras Zootec 37: 1869-1875. https://doi.org/10.1590/S1516-35982008001000022

Santos-Silva J, Mendes IA, Bessa RJB, 2002. The effect of genotype, feeding system and slaughter weight on the quality of light lambs. II: Growth, carcass composition and meat quality. Liv Sci 76: 17-25. https://doi.org/10.1016/S0301-6226(01)00334-7

SAS, 2009. SAS/STAT: user's guide, version 9.2. SAS Institute, Cary, NC, USA.

Silva RC, Ferreira MA, Oliveira JCV, Santos DC, Gama MAS, Chagas JCC, et al., 2018. Orelha de Elefante Mexicana (Opuntia stricta [Haw.] Haw.) spineless cactus as an option in crossbred dairy cattle diet. S Afr J Anim Sci 48: 516-525. https://doi.org/10.4314/sajas.v48i3.12

Silva TGP, Batista AMV, Guim A, Silva Júnior VA, Carvalho FFR, Barros MEG, et al., 2020. Histomorphometric changes of the fore-stomach of lambs fed diets containing spineless cactus genotypes resistant to Dactylopius sp. Trop Anim Health Prod 52: 1299-1307. https://doi.org/10.1007/s11250-019-02129-0

Silva TGP, Batista AMV, Guim A, Souza FAL, Carvalho FFR, Silva Júnior VA, et al., 2021. Cactus cladodes cause intestinal damage, but improve sheep performance. Trop Anim Health Prod 53: 1-10. https://doi.org/10.1007/s11250-021-02731-1

Siqueira MC, Ferreira MA, Monnerat JPIS, Silva JL, Costa CT, Conceição MG, et al., 2017. Optimizing the use of spineless cactus in the diets of cattle: Total and partial digestibility, fiber dynamics and ruminal parameters. Anim Feed Sci Technol 226: 56-64. https://doi.org/10.1016/j.anifeedsci.2016.12.006

Siqueira TDQ, Monnerat JPIS, Chagas JCC, Conceição MG, Siqueira MCB, Viana TBL, et al., 2019. Cactus cladodes associated with urea and sugarcane bagasse: an alternative to conserved feed in semi-arid regions. Trop Anim Health Prod 51: 1975-1980. https://doi.org/10.1007/s11250-019-01895-1

Ston H, Sidel J, 2004. Sensory evaluation practices, 3th Ed. California: Elsevier Academic Press. 408 pp.

Usman UA, Moraes ACA, Silva TGP, Batista AMV, Soares PC, Araújo CASC, et al., 2022. Kidney changes in lambs fed cactus pear varieties resistant to Dactylopius opuntiae as the only roughage. Trop Anim Health Prod 54: 1-10. https://doi.org/10.1007/s11250-022-03328-y

Vasconcelos AGV, Lira MA, Cavalcanti VLB, Santos MVF, Willadino L, 2009. Seleção de clones de palma forrageira resistentes à cochonilha-do-carmim (Dactylopius sp). Rev Bras Zootec 38: 827-831. https://doi.org/10.1590/S1516-35982009000500007

Wheeler TL, Cundiff LV, Koch RM, 1993. Effects of marbling degree on palatability and caloric content of beef. Beef Research Progress Report 71: 133-134. https://digitalcommons.unl.edu/hruskareports/126.

Published
2024-03-04
How to Cite
Lopes, L. A., Carvalho, F. F. R., Ferreira, M. A., Batista, A. M. V., Maciel, M. V., Maciel, M. I. S., Andrade, R. B., Munhame, J. A., Cardoso, D. B., Silva, T. G. P., & Lima-Júnior, D. M. (2024). Influence of genotypes of spineless cacti on feedlot lamb carcass characteristics and meat quality. Spanish Journal of Agricultural Research, 22(2), e0604. https://doi.org/10.5424/sjar/2024222-20427
Section
Animal production