Optimal germination conditions for monitoring seed viability in wild populations of fescues

  • Pablo Vivanco INIA-CSIC, Centro Nacional de Recursos Fitogenéticos (CRF). Apdo. 1045, 28805 Alcalá de Henares (Madrid),
  • Jose A. Oliveira Universidad de Oviedo, Dept. Biología de Organismos y Sistemas. c/ Gonzalo Gutiérrez Quirós, 33600 Mieres (Asturias) http://orcid.org/0000-0003-4196-8934
  • Isaura Martín INIA-CSIC, Centro Nacional de Recursos Fitogenéticos (CRF). Apdo. 1045, 28805 Alcalá de Henares (Madrid), http://orcid.org/0000-0002-1826-0711
Keywords: pasture grasses, genebank, seed dormancy

Abstract

Aim of study: Germination assays are vital in the management of material preserved in germplasm banks. The rules published by the International Seed Testing Association (ISTA) are generally those followed in such assays. In wild species, seed dormancy and inter-population variability increase the difficulty in estimating seed viability. The aim of the present work was to determine the germination requirements of the seeds from different wild populations of pasture grasses species.

Area of study: Northwestern Spain

Material and methods: Seeds from eight wild populations of different species of Festuca, all from northwestern Spain, were studied. Germination assays were performed under constant and alternating temperature conditions. Treatments for removing seed dormancy (cold stratification and gibberellic acid application) were also applied. A full parametric time-to event model was used for data analysis.

Main results: In general, the optimum environmental temperature for germination was around 15°C for the populations of Festuca group ovina, F. gr. rubra and F. gigantea; temperatures of 20-30ºC had a negative effect. All the examined populations, except that of tall fescue (Lolium arundinaceum), showed non-deep physiological dormancy at suboptimal germination temperatures, but this was breakable by the application of gibberellic acid and by cold stratification.

Research highlights: There are clear inter- and intra-specific differences in germination requirements that might be associated with place of origin. The ISTA germination assay recommendations for wild members of fescues may not be the most appropriate.

Downloads

Download data is not yet available.

References

Adkins SW, Bellairs SM, Loch DS, 2002. Seed dormancy mechanisms in warm season grass species. Euphytica 126: 13-20. https://doi.org/10.1023/A:1019623706427

Anderson L, Milberg P, 1998. Variation in seed dormancy among mother plants, populations and years of seed collection. Seed Sci Res 8: 29-38. https://doi.org/10.1017/S0960258500003883

Baskin CC, Baskin JM, 1998. Ecology of seed dormancy and germination in grasses. In: Population biology of grasses; Cheplick GP (ed.). pp. 30-83. Cambridge Univ Press, UK. https://doi.org/10.1017/CBO9780511525445.004

Baskin CC, Baskin JM, 2004. A classification system for seed dormancy. Seed Sci Res 14: 1-16. https://doi.org/10.1079/SSR2003150

Baskin CC, Baskin JM, 2014. Seeds: Ecology, biogeography, and evolution of dormancy and germination. Academic Press, Cambridge, UK, 666 pp.

Batello C, Mannetje LT, Suttie J, 2007. Plant genetic resources of grassland and forage species. Background Study Paper No. 40. FAO, Commission on Genetic Resources for Food and Agriculture. http://www.fao.org/tempref/docrep/fao/meeting/014/k0182e.pdf [20 Nov 2019].

Bewley JD, 1997. Seed germination and dormancy. The Plant Cell 9: 1055-1066. https://doi.org/10.1105/tpc.9.7.1055

Boyce KG, Cole DF, Chilcote DO, 1976. Effect of temperature and dormancy on germination of tall fescue. Crop Sci 16 (1): 15-18. https://doi.org/10.2135/cropsci1976.0011183X001600010004x

Chahtane H, Kim W, Lopez-Molina L, 2017. Primary seed dormancy: a temporally multilayered riddle waiting to be unlocked. J Exp Bot 68: 857-869. https://doi.org/10.1093/jxb/erw377

Chorlton KH, Marshall AH, Thomas ID, 1997. Germination requirements and dormancy in Festuca gigantea (L.) Vill. populations. In: Basic and applied aspects of seed biology; Ellis RH et al. (eds.). pp. 279-287. Springer, Dordrecht, The Netherlands. https://doi.org/10.1007/978-94-011-5716-2_31

Cross JW, Bonos SA, Huang BR, Meyer WA, 2013. Evaluation of heat and drought as components of summer stress on tall fescue genotypes. HortScience 48 (12): 1562-1567. https://doi.org/10.21273/HORTSCI.48.12.1562

Danielson HR, Toole VK, 1976. Action of temperature and light on the control of seed germination in Alta tall fescue (Festuca arundinacea Schreb.). Crop Sci 16: 317-320. https://doi.org/10.2135/cropsci1976.0011183X001600030001x

Davies R, Di Sacco A, Newton R, 2015. Germination testing: procedures and evaluation. Technical Information Sheet 13a. Royal Botanic Gardens. Kew, UK. 4 pp.

De Nova PJ, Monte JG, Soler C, 2006. Genetic relationships within and among Iberian fescues (Festuca L.) based on PCR-amplified markers. Genome 49: 1170-1183. https://doi.org/10.1139/g06-077

De Wet JMJ, Harlan JR, 1975. Weeds and domesticates: Evolution in the man-made habitat. Econ Bot 29: 99-108. https://doi.org/10.1007/BF02863309

Doescher P, Miller R, Winward A, 1985. Effects of moisture and temperature on germination of Idaho fescue. J Range Manage 38: 317-320. https://doi.org/10.2307/3899411

FAO, 2010. The second report on the state of the world's plant genetic resources for food and agriculture. FAO, Rome. 402 pp.

FAO, 2014. Genebank standards for plant genetic resources for food and agriculture. FAO, Rome. 182 pp.

Gibson DJ, Newman JA, 2001. Festuca arundinacea Schreber (F. elatior L. ssp. arundinacea (Schreber) Hackel). J Ecol 89 (2): 304-324. https://doi.org/10.1046/j.1365-2745.2001.00561.x

Grilz PL, Romo JT, Young JA, 1994. Comparative germination of smooth brome and plains rough fescue. Prairie Naturalist 26: 157-170.

Hand ML, Cogan NOI, Stewart AV, Forster JW, 2010. Evolutionary history of tall fescue morphotypes related to molecular phylogenetics of the Lolium-Festuca species complex. BMC Evol Biol 10: 303. https://doi.org/10.1186/1471-2148-10-303

Hill MJ, Pearson CJ, Kirby AC, 1985. Germination and seedling growth of prairie grass, tall fescue and Italian ryegrass at different temperatures. Aust J Agr Res 36: 13-24. https://doi.org/10.1071/AR9850013

Huff DR, Palazzo AJ, 1998. Fine Fescue species determination by laser flow cytometry. Crop Sci 38 (2): 445-450. https://doi.org/10.2135/cropsci1998.0011183X003800020029x

ISTA, 2017. International rules for seed testing 2017. The International Seed Testing Association (ISTA). Bassersdorf, Switzerland.

Kearns V, Toole EH, 1939. Temperatures and other factors affecting the germination of fescue seed. USDA Tech Bull No.638. Washington DC, USA.

Larsen S, Bailly C, Côme D, Corbineau F, (2004). Use of the hydrothermal time model to analyse interacting effects of water and temperature on germination of three grass species. Seed Sci Res 14 (1): 35-50. https://doi.org/10.1079/SSR2003153

López Díaz JE, Oliveira Prendes JA, González Arráez E, 2010. Los recursos fitogenéticos de especies pratenses en Galicia. Pastos 40 (1): 5-27.

López-Díaz JE, Calvete GF, 2016. Sistemas de multiplicación de semilla en ambientes controlados: tecnología de micro invernaderos desarrollada en el CIAM. Afriga 124: 116-124.

López AS, Marchelli P, Batlla D, López DR, Arana MV, 2019. Seed responses to temperature indicate different germination strategies among Festuca pallescens populations from semi-arid environments in North Patagonia. Agr For Meteorol 272-273: 81-90. https://doi.org/10.1016/j.agrformet.2019.04.002

Lord JM, 1994. Variation in Festuca novae-zelandiae (Hack) Cockayne germination behavior with altitude of seed source. New Zeal J Bot 32 (2): 227-235. https://doi.org/10.1080/0028825X.1994.10410369

Lu H, Shen J, Jin XQ, Hannaway D, Daly C, Halbleib MD, 2008. Determining optimal seeding times for tall fescue using germination studies and spatial climate analysis. Agr For Meteorol 148 (6-7): 931-941. https://doi.org/10.1016/j.agrformet.2008.01.004

Martín I, Guerrero M, 2014. Effect of sulphuric acid scarification on seed accessions of cluster clover (Trifolium glomeratum) stored in a genebank. Seed Sci Technol 42 (2): 293-299. https://doi.org/10.15258/sst.2014.42.2.18

McDonald MB, Copeland LO, Knapp AD, Grabe DF, 1996. Seed development, germination and quality. In: Cool-season forage grasses, Agron Monogr 34; Moser LE, et al. (eds.). pp. 15-70. ASA-CSSA-SSA, Madison, WI, USA. https://doi.org/10.2134/agronmonogr34.c2

McNair JN, Sunkara A, Frobish D, 2012. How to analyse seed germination data using statistical time-to-event analysis: non-parametric and semi-parametric methods. Seed Sci Res 22 (2): 77-95. https://doi.org/10.1017/S0960258511000547

Mollard FPO, Naeth MA, 2014. Photoinhibition of germination in grass seed and implications for prairie revegetation. J Environ Manage 142: 1-9. https://doi.org/10.1016/j.jenvman.2014.04.007

Oliveira JA, Gutiérrez-Villarias MI, Fernández-Casado MA, Costal-Andrade L, González-Arráez E, Bughrara SS, Afif E, 2008. Agronomic, leaf anatomy, morphology, endophyte presence and ploidy characterization of accessions of Festuca group rubra collected in northern Spain. Span J Agric Res 6 (4): 586-598. https://doi.org/10.5424/sjar/2008064-5293

Onofri A, Gresta F, Tei F, 2010. A new method for the analysis of germination and emergence data of weed species. Weed Res 50: 187-198. https://doi.org/10.1111/j.1365-3180.2010.00776.x

Onofri A, Mesgaran MB, Tei F, Cousens RD, 2011. The cure model: an improved way to describe seed germination? Weed Res 51: 516-524. https://doi.org/10.1111/j.1365-3180.2011.00870.x

Qiu J, Bai Y, Fu YB, Wilmshurst JF, 2010. Spatial variation in temperature thresholds during seed germination of remnant Festuca hallii populations across the Canadian prairie. Environ Exp Bot 67: 479-486. https://doi.org/10.1016/j.envexpbot.2009.09.002

R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/ [10 Aug 2019].

Rao NK, Hanson J, Dulloo ME, Ghosh K, Novell D, Larinde M, 2007. Manual para el manejo de semillas en bancos de germoplasma. Manuales para Bancos de Germoplasma No. 8. Bioversity International, Roma. 165 pp.

Ritz C, Pipper CB, Streibig JC, 2013. Analysis of germination data from agricultural experiments. Eur J Agron 45: 1-6. https://doi.org/10.1016/j.eja.2012.10.003

Ritz C, Baty F, Streibig JC, Gerhard D, 2015. Dose-response analysis using R. PLoS ONE 10 (12): e0146021. https://doi.org/10.1371/journal.pone.0146021

Romo JT, Grilz PL, Buhar CJ, Young JA, 1991. Influences of temperature and water stress on germination of plains rough fescue. J Range Manage 44: 75-81. https://doi.org/10.2307/4002644

Sharifiamina S, Moot DJ, Bloomberg M, 2016. Calculating "Hydrothermal time" to quantify seed germination of tall fescue. J New Zeal Grassl 78: 163-168. https://doi.org/10.33584/jnzg.2016.78.499

Scott J, Jones RA, Williams WA, 1984. Review of data analysis methods for seed germination. Crop Sci 24 (6): 1192-1199. https://doi.org/10.2135/cropsci1984.0011183X002400060043x

Sileshi GW, 2012. A critique of current trends in the statistical analysis of seed germination and viability data. Seed Sci Res 22: 145-149. https://doi.org/10.1017/S0960258512000025

Soltani E, Ghaderi-Far F, Baskin CC, Baskin JM, 2015. Problems with using mean germination time to calculate rate of seed germination. Aust J Bot 63: 631-635. https://doi.org/10.1071/BT15133

Stanisavljević R, Dragićević V, Milenković J, DjukanoviJć L, Djokić D, Terzić D, Dodig D, 2010. Effects of the duration of after-ripening period on seed germinations and seedling size in three fescue species. Span J Agric Res 8: 454-459. https://doi.org/10.5424/sjar/2010082-1179

Steadman KJ, Crawford AD, Gallagher RS, 2003. Dormancy release in Lolium rigidum seeds is a function of thermal after-ripening time and seed water content. Funct Plant Biol 30: 345-352. https://doi.org/10.1071/FP02175

Thompson K, Grime JP, 1979. Seasonal Variation in the seed banks of herbaceous species in ten contrasting habitats. J Ecol 67 (3): 893-921. https://doi.org/10.2307/2259220

Warton DI, Hui FK, 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92 (1): 3-10. https://doi.org/10.1890/10-0340.1

Williams ED, 1983. Effects of temperature, light, nitrate and pre-chilling on seed germination of grassland plants. Ann Appl Biol 103 (1): 161-172. https://doi.org/10.1111/j.1744-7348.1983.tb02752.x

Published
2021-08-12
How to Cite
Vivanco, P., Oliveira, J. A., & Martín, I. (2021). Optimal germination conditions for monitoring seed viability in wild populations of fescues. Spanish Journal of Agricultural Research, 19(3), e0804. https://doi.org/10.5424/sjar/2021193-18025
Section
Plant physiology