Analysis and evaluation of a dynamic model for greenhouse lettuce growth

Keywords: NICOLET B3 model, Lactuca sativa L, dynamic simulation

Abstract

Aim of study: We analyzed and evaluated a nonlinear dynamic crop growth model called NICOLET B3, which can predict the dry and fresh matter content of lettuce in greenhouses.

Area of study: Calibration was performed using experimental data obtained from the literature. The experiment was carried out in Saltillo, Mexico, and in a greenhouse in Beijing, China.

Material and methods: We identified and discussed the feasibility of the studied model with multi-dimensional evaluation criteria. Meanwhile, a sensitivity analysis of input variables was conducted. After that, the least square identification method was used to calibrate the most sensitive parameter values to improve the robustness of the model.

Main results: Results demonstrate that: i) the NICOLET B3 model is able to predict the fresh and dry matter production of lettuce with satisfactory accuracy verified (R2 = 0.9939 for fresh matter and R2 = 0.9858 for dry matter); ii) temperature has the most obvious impact on the model performance, compared with photosynthetically active radiation and CO2 concentration; iii) the model could perform well with only two inputs.

Research highlights: Simulation results of evaluated NICOLET B3 model have a perfect goodness-of-fit. A method of calibrating parameters of the model and sensitivity analysis of three input variables of the model can facilitate its application.

Downloads

Download data is not yet available.

References

Asseng S, Zhu Y, Basso B, Wilson T, Cammarano D, 2014. Simulation modeling: applications in cropping systems. Encycl Agr Food Syst 102-112. https://doi.org/10.1016/B978-0-444-52512-3.00233-3

Behr U, Wiebe HJ, 1992. Relation between photosynthesis and nitrate content of lettuce cultivars. Sci Hortic 49: 175-179. https://doi.org/10.1016/0304-4238(92)90155-6

Bojacá CR, Gil R, Cooman A, 2009. Use of geostatistical and crop growth modelling to assess the variability of greenhouse tomato yield caused by spatial temperature variations. Comput Electr Agr 65: 219-227. https://doi.org/10.1016/j.compag.2008.10.001

Ehret DL, Hill BD, Helmer T, Edwards DR, 2011. Neural network modeling of greenhouse tomato yield, growth and water use from automated crop monitoring data. Comput Electr Agr 79: 82-89. https://doi.org/10.1016/j.compag.2011.07.013

Escobar-Gutiérrez AJ, Burns IG, 2002. A model to optimize nitrogen supply in soil-grown greenhouse lettuce crops. Acta Hortic 593: 77-83. https://doi.org/10.17660/ActaHortic.2002.593.9

France J, Thornley, J H, 1984. Mathematical models in agriculture. Butterworths, London, UK.

Gijzen H, Heuvelink E, Challa H, Dayan E, Marcelis LFM, Cohen S, 1998. HORTISIM: A model for greenhouse crops and greenhouse climate. Acta Hortic 456: 441-450. https://doi.org/10.17660/ActaHortic.1998.456.53

Gong X, Liu H, Sun J, Gao Y, Zhang H, 2019. Comparison of shuttle worth-wallace model and dual crop coefficient method for estimating evapotranspiration of tomato cultivated in a solar greenhouse. Agric Water Manag: 217: 141-153. https://doi.org/10.1016/j.agwat.2019.02.012

Harwell M, 2018. A strategy for using bias and RMSE as outcomes in Monte Carlo studies in statistics. J Mod Appl Stat Methods 17: 2938. https://doi.org/10.22237/jmasm/1551907966

Helmenstine AM, 2020. Relative error definition (Science)." ThoughtCo. https://www.thoughtco.com/definition-of-relative-error-605609 [March 11, 2021].

Jones JW, Dayan E, Allen, LH, van Keulen H, Challa H, 1991. A dynamic tomato growth and yield model (TOMGRO). T ASABE 34: 663-672. https://doi.org/10.13031/2013.31715

Juárez-Maldonado A, De-Alba-Romenus K, Ramírez-Sosa, MMI, Benavides-Mendoza A, Robledo-Torres V, 2010. An experimental validation of NICOLET B3 mathematical model for lettuce growth in the southeast region of Coahuila México by dynamic simulation. 7th Int Conf on Electr Eng Comput Sci and Autom Contr, pp: 128-133. https://doi.org/10.1109/ICEEE.2010.5608663

Juárez-Maldonado A, De-Alba-Romenus K, Morales A, Ramírez-Sosa MIM, 2012. Dynamic behavior analysis of the NICOLET B3 model. World Autom Congr 2012, pp: 1-6.

Keller JP, Bonvin D, 1987. Selection of inputs for the purpose of model reduction and controller design. IFAC Proc 20: 209-214. https://doi.org/10.1016/S1474-6670(17)55441-5

Körner O, Holst N, 2017. An open-source greenhouse modelling platform. Acta Hortic 1154: 241-248. https://doi.org/10.17660/ActaHortic.2017.1154.32

Li X, Zhu C, Wang J. Yu J, 2012. Computer simulation in plant breeding. Adv Agron 116: 219-264. https://doi.org/10.1016/B978-0-12-394277-7.00006-3

Lin D, Wei R, Xu L, 2019. An integrated yield prediction model for greenhouse tomato. Agronomy 9: 873. https://doi.org/10.3390/agronomy9120873

Linker R, Seginer I, Buwalda F, 2004. Description and calibration of a dynamic model for lettuce grown in a nitrate-limiting environment. Math Comput Model 40: 1009-1024. https://doi.org/10.1016/j.mcm.2004.12.001

López-Cruz I L, van Willigenburg LG, van Straten G, 2003. Optimal control of nitrate in lettuce by a hybrid approach: differential evolution and adjustable weight gradient algorithms. Comput Electr Agr 40: 179-197. https://doi.org/10.1016/S0168-1699(03)00019-X

López-Cruz IL, Ramírez-Arias A, Rojano-Aguilar A, 2004. Sensitivity analysis of a dynamic growth model for greenhouse grown lettuce (Lactuca sativa L.). Agrociencia 38: 613-624.

López-Cruz IL, Rojano-Aguilar A, Salazar-Moreno R, Ruiz-GarcíaA, Goddard J, 2012. A comparison of local and global sensitivity analyses for greenhouse crop models. Acta Hortic 957: 267-273. https://doi.org/10.17660/ActaHortic.2012.957.30

Marcelis LFM, 1994. A simulation model for dry matter partitioning in cucumber. Ann Bot 74: 43-52. https://doi.org/10.1093/aob/74.1.43

Mathieu J, Linker R, Levine L, Albright L, Both AJ, Spanswick R, 2006. Evaluation of the NICOLET model for simulation of short-term hydroponic lettuce growth and nitrate uptake. Biosyst Eng 95: 323-337. https://doi.org/10.1016/j.biosystemseng.2006.07.006

Neter J, Kutner MH, Nachtsheim CJ, Wasserman W, 1996. Applied linear statistical models, 4th ed. WCB McGraw-Hill, NY.

Quesada-Roldán G, Bertsch-Hernández F, 2013. Obtaining of the absorption curve for the FB-17 tomato hybrid. Terra Latinoam 31: 1-7.

Ramírez-Pérez LJ, Morales-Díaz AB, Benavides-Mendoza A, De-Alba-Romenus K, González-Morales S, Juárez-Maldonado A, 2018. Dynamic modeling of cucumber crop growth and uptake of N, P and K under greenhouse conditions. Sci Hortic 234: 250-260. https://doi.org/10.1016/j.scienta.2018.02.068

Ríos-Moreno GJ, Trejo-Perea M, Castañeda-Miranda R, Hernández-Guzmán VM, Herrera-Ruiz G, 2007. Modeling temperature in intelligent buildings by means of autoregressive models. Autom Constr 16: 713-722. https://doi.org/10.1016/j.autcon.2006.11.003

Ruı́z-Garcı́a A, López-Cruz IL, Ramírez-Arias A, Rico-Garcia E, 2014. Modeling uncertainty of greenhouse crop lettuce growth model using kalman filtering. Acta Hortic 1037: 361-368. https://doi.org/10.17660/ActaHortic.2014.1037.44

Seginer I, 2003. A dynamic model for nitrogen-stressed lettuce. Ann Bot 91: 623-635. https://doi.org/10.1093/aob/mcg069

Seginer I, 2004. Equilibrium and balanced growth of a vegetative crop. Ann Bot 93: 127-139. https://doi.org/10.1093/aob/mch021

Seginer I, Stützel H, 2006. Model guided calibration: nitrogen in cauliflower. Acta Hortic 718: 157-164. https://doi.org/10.17660/ActaHortic.2006.718.17

Seginer I, van Straten G, Buwalda F, 1998. Nitrate concentration in greenhouse lettuce: a modeling study. Acta Hortic 456: 189-197. https://doi.org/10.17660/ActaHortic.1998.456.21

Seginer I, van Straten G, Buwalda F, 1999. Lettuce growth limited by nitrate supply. Acta Hortic 507: 141-148. https://doi.org/10.17660/ActaHortic.1999.507.16

Seginer I, Linker R, Buwalda F, van Straten G, Bleyaert P, 2004. The NICOLET lettuce model: a theme with variations. Acta Hortic 654: 71-78. https://doi.org/10.17660/ActaHortic.2004.654.7

Shamshiri R, Ahmad D, Zakaria A, Ismail WIW, Man HC, Yamin M, 2016. Evaluation of the reduced state-variable TOMGRO model using boundary data. ASABE Annu Int Meet, Orlando, FL, USA, paper 162454205.

Shimizu H, Kushida M, Fujinuma W, 2008. A growth model for leaf lettuce under greenhouse environments. Environ Control Biol 46: 211-219. https://doi.org/10.2525/ecb.46.211

Stigter JD, van Straten G, 2000. Nitrate control of leafy vegetables: a classical dynamic optimization approach. IFAC Proc 33: 95-99. https://doi.org/10.1016/S1474-6670(17)40895-0

van Henten EJ, 1994. Validation of a dynamic lettuce growth model for greenhouse climate control. Agric Syst 45: 55-72. https://doi.org/10.1016/S0308-521X(94)90280-1

van Holsteijn HMC, 1980. Growth of lettuce. II. Quantitative analysis of growth. Mededelingen Land Bouwhogeschool Wageningen 80: 1-24.

van Straten G, Lopez-Cruz I, Seginer I, Buwalda F, 1999. Calibration and sensitivity analysis of a dynamic model for control of nitrate in lettuce. Acta Hortic 507: 149-156. https://doi.org/10.17660/ActaHortic.1999.507.17

Wang L, Iddio E, Ewers B, 2021. Introductory overview: Evapotranspiration (ET) models for controlled environment agriculture (CEA). Comput Electron Agr 190: 106447. https://doi.org/10.1016/j.compag.2021.106447

Young C, Holsteen K, 2017. Model uncertainty and robustness: a computational framework for multi-model analysis. Sociol Methods Res 46: 3-40. https://doi.org/10.1177/0049124115610347

Zhang K, Burns I G, Broadley M R, Turner M, 2004. Developing a dynamic model for glasshouse lettuce growth and nitrogen concentration. Acta Hortic 654: 63-69. https://doi.org/10.17660/ActaHortic.2004.654.6

Zhang KF, Burns Ian G, Broadley M R, Turner MK, 2008. Derivation of a model of the kinetics of nitrogen uptake throughout the growth of lettuce: Calibration and validation. J Plant Nutr 31: 1440-1460. https://doi.org/10.1080/01904160802208345

Published
2022-10-20
How to Cite
Tan, C., Zhang, S., Guo, Y., & Wang, Y. (2022). Analysis and evaluation of a dynamic model for greenhouse lettuce growth. Spanish Journal of Agricultural Research, 20(4), e0904. https://doi.org/10.5424/sjar/2022204-18658
Section
Plant production (Field and horticultural crops)