Early detection of graft-incompatibility in hawthorn (Crataegus azarolus L.) trees on apple, pear, and quince rootstocks

Keywords: clonal rootstock, histology, vigor, translocated incompatibility, localized incompatibility

Abstract

Aim of study: This study was conducted to determine the usability of some clonal rootstocks of apple (MM 106 and MM 111), pear (Fox 11), and quince (Quince A) for hawthorn trees propagation.

Area of study: Fruit Research Institute, Isparta and Hatay Mustafa Kemal University, Hatay, Türkiye.

Material and methods: ‘Sultan’ hawthorn cultivar was budded on the following clonal rootstocks: pear Fox 11, quince A, and apple MM 106 and MM 111. Plants of hawthorn seedlings (Crataegus azarolus L.) budded with ‘Sultan’ cv. were used as control. External visual diagnosis of the scion-rootstock graft combinations was performed by observing visual symptoms in budded trees growing in nursery conditions, as well as anatomic and histological investigations of the incompatibility in the laboratory.

Main results: In this study, healthy scion development and callus tissue in the graft region were formed in the seedling rootstock as well as on Fox11 and Quince A clonal rootstocks. In contrast, MM 106 and MM 111 apple rootstocks showed incompatibility symptoms, with insufficient scion vigor and unstructured callus tissue development.

Research highlights: ‘Tanslocated’ and ‘located’ graft incompatibility symptoms were observed in Sultan/MM 106 and Sultan/MM 111 combinations. Further studies are necessary to confirm the early good compatibility found in nursery conditions, testing the effect of those clonal rootstocks from different species (Fox11 and Quince A) on vigor, yield, and fruit quality traits in orchard conditions.

Downloads

Download data is not yet available.

References

Amri R, Font i Forcada C, Giménez R, Pina A, Moreno MA, 2021. Biochemical characterization and differential expression of PAL genes associated with 'translocated' peach/plum graft-incompatibility. Front Plant Sci 10: 1-14. https://doi.org/10.3389/fpls.2021.622578

Andrews PK, Marquez CS, 2010. Graft incompatibility. Hortic Rev 15: 183-232. https://doi.org/10.1002/9780470650547.ch5

Bahri-Sahloul R, Ammar S, Grec S, Harzallah-Skhiri F, 2009. Chemical characterization of Crataegus azarolus L. fruit from 14 genotypes found in Tunisia. J Hortic Sci Biotechnol 84: 23-28. https://doi.org/10.1080/14620316.2009.11512474

Balbi RV, Pio R, Farias DH, Melo ET, Pereira MP, Pereira FJ, 2019. The cell regeneration and connection of grafting between pear and quince trees are defined by the cortex and phloem. Sci Hortic 257: 108662. https://doi.org/10.1016/j.scienta.2019.108662

Baron D, Amaro ACE, Pina A, Ferreira G, 2019. An overview of grafting re-establishment in woody fruit species. Sci Hortic 243: 84-91. https://doi.org/10.1016/j.scienta.2018.08.012

Bayazıt S, Gündüz K, Sezgin EÖ, Çalışkan O, 2018. Current situation and future of hawthorn culture in Hatay province. J Agric Fac Gaziosmanpasa Univ 35: 258-263. https://doi.org/10.13002/jafag4508

Caliskan O, 2015. Mediterranean hawthorn fruit (Crataegus spp.) species and potential usage. In: the Mediterranean diet: An evidence-based approach; Preddy VR &, Watson RT (eds.). pp: 621-628. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-407849-9.00055-5

Caliskan O, Bayazit S, Gunduz K, 2016. Hawthorn species from Turkey and potential usage for horticulture. Proc VII Int Sci Agric Sym, Jahorina (Bosnia and Herzegovina), Oct 6-9. pp: 330-336.

Caliskan O, Karaman H, 2018. Effects of different grafting methods and times on grafting success and plant development in Sarı Alıç hawthorn genotype (Crataegus azarolus L.). J Agric Food Environ Sci 72: 198-202. https://doi.org/10.55302/JAFES18721198c

Çalışkan O, Gündüz K, Bayazit S, 2018. Investigation of morphological, biological and fruit quality characteristics of Sarı Alıç hawthorn genotype (Crataegus azarolus L.). J Agric Faculty Gaziosmanpasa Univ 35: 69-74.

Çalışkan O, Mavi K, Bayazit S, Kılıç D, 2020. Effects of some application on seedling emergence of hawthorn (Crataegus azarolus L.). Bahçe 49: 139-143.

Dolgun O, Yıldırım A, Polat M, Yıldırım F, Aşkın A, 2009. Apple graft formation in relation to growth rate features of rootstocks. Afr J Agric Res 4: 530-534.

Donmez AA, Ozderin S, 2019. Additional contributions to taxonomy, nomenclature and biogeography of the Turkish Crataegus (Rosaceae) taxa. PhytoKeys 122: 1-13. https://doi.org/10.3897/phytokeys.122.33002

Dursun A, Çalışkan O, Güler Z, Bayazit S, Türkmen D, Gündüz K, 2021. Effect of harvest maturity on volatile compounds profiling and eating quality of hawthorn (Crataegus azarolus L.) fruit. Sci Hortic 288: 110398. https://doi.org/10.1016/j.scienta.2021.110398

Ercisli S, Yanar M, Sengul M, Yildiz H, Topdas EF, Taskin T, Zengin Y, 2015. Physico-chemical activity of hawthorn (Crataegus spp. L.) fruits in Turkey. Acta Sci Pol Hortorum Cultus 14: 83-93.

Espen L, Cocucci M, Sacchi GA, 2005. Differentiation and functional connection of vascular elements in compatible and incompatible pear/quince internode micrografts. Tree Physiol 25: 1419-1425. https://doi.org/10.1093/treephys/25.11.1419

Fadel AL, Stuchi ES, Silva SR, Parolin LG, Oliveira CR, Müller GV, Donadio LC, 2019. Compatibility and horticultural performance of Pera sweet orange clones grafted to Swingle citrumelo rootstock. Bragantia 78: 564-572. https://doi.org/10.1590/1678-4499.20190116

Flaishman MA, Loginovski K, Golobowich S, Lev-Yadun S, 2008. Arabidopsis thaliana as a model system for graft union development in homografts and heterografts. J Plant Growth Regul 27: 231-239. https://doi.org/10.1007/s00344-008-9050-y

Goldschmidt EE, 2014. Plant grafting: new mechanism, evolutionary implications. Front Plant Sci 5: 727. https://doi.org/10.3389/fpls.2014.00727

Gulen H, Arora R, Kuden A, Krebs SL, Postman J, 2002. Apple graft formation about growth rate features of rootstocks. J Amer Soc Hort Sci 127: 152-157. https://doi.org/10.21273/JASHS.127.2.152

Gundogdu M, Ozrenk K, Ercisli S, Kan T, Kodad O, Hegedus A, 2014. Organic acids, sugars, vitamin C content and some pomological characteristics of eleven hawthorn species (Crataegus spp.) from Turkey. Biol Res 47: 21. https://doi.org/10.1186/0717-6287-47-21

Guo T, Jiao P, 1995. Hawthorn (Crataegus) resources in China. HortScience 30: 1132-1134. https://doi.org/10.21273/HORTSCI.30.6.1132

Gür İ, Koçal H, Kaçal E, Aydınlı M, Yalçın B, Karamürsel Ö, et al., 2020. Determination of grafting compatibility of some selected plum genotypes with Monroe peach and Aprikoz apricot varieties. Fruit Sci 7: 1-9.

Hartmann HT, Kester DE, Davies FT, Geneve RL, 2002. Hartmann and Kester's plant propagation principles and practices. Prentice-Hall, Upper Saddle River, NJ, USA, 880 pp.

Hummer KE, Janick J, 2009. Rosaceae: Taxonomy, economic importance. In: Genetics and Genomics of Rosaceae; Folta KM & Gardiner SE (eds.). pp: 1-17. Springer, New York. https://doi.org/10.1007/978-0-387-77491-6_1

Irisarri P, Errea P, Pina A, Zhebentyayeva T, 2017. Genetic determinism of graft compatibility in apricot. Acta Hortic 1172: 345-348. https://doi.org/10.17660/ActaHortic.2017.1172.64

Irisarri P, Errea P, Pina A, 2021. Physiological and molecular characterization of new apricot cultivars grafted on different Prunus rootstocks. Agronomy 11: 1464. https://doi.org/10.3390/agronomy11081464

Issaadi O, Fibiani M, Picchi V, Scalzo R, Madani K, 2020. Phenolic composition and antioxidant capacity of hawthorn (Crataegus oxyacantha L.) flowers and fruits grown in Algeria. J Compl Integr Med 17: 20180125. https://doi.org/10.1515/jcim-2018-0125

Li W, Hu Q, P, Q, Xu JG, 2015. Changes in physicochemical characteristics and free amino acids of hawthorn (Crataegus pinnatifida) fruits during maturation. Food Chem 175: 50-56. https://doi.org/10.1016/j.foodchem.2014.11.125

Li D, Han F, Liu X, Lv H, Li L, Tian H, Zhong C, 2021. Localized graft incompatibility in kiwifruit: Analysis of homografts and heterografts with different rootstock & scion combinations. Sci Hortic 283: 110080. https://doi.org/10.1016/j.scienta.2021.110080

Machado BD, Magro M, Rufato L, Bogo A, Kreztschmar AA, 2016. Graft compatibility between European pear cultivars and East Malling "C" rootstock. Rev Bras Frutic 39: e-063. https://doi.org/10.1590/0100-29452017063

Melnyk CW, 2017. Plant grafting: insights into tissue regeneration. Regen 4: 3-14. https://doi.org/10.1002/reg2.71

Moore R, 1984. A model for graft compatibility-incompatibility in higher plants. Am J Bot 71: 752-758. https://doi.org/10.1002/j.1537-2197.1984.tb14182.x

Moreno MA, Moing A, Lansac M, Gaudillère JP, Salesses G, 1993. Peach/myrobalan plum graft incompatibility in the nursery. J Hortic Sci 68: 705-714. https://doi.org/10.1080/00221589.1993.11516403

Moreno MA, Tabuenca MC, Cambra R, 1995. Adara: A plum rootstock for cherries and other stone fruit species. HortScience 30: 1316-1317. https://doi.org/10.21273/HORTSCI.30.6.1316

Mosse B, Herrero J, 1951. Studies on incompatibility between some pear and quince grafts. J Hortic Sci 26: 238-245. https://doi.org/10.1080/00221589.1951.11513737

Mosse B, 1962. Graft incompatibility in fruit trees. Tech Commun No. 28, Commonwealth Bureau of Horticulture and Plantation Crops, East Malling, Maidstone, Kent, UK, 36 pp.

Mudge K, Janick J, Scofield S, Goldschmidt EE, 2009. A history of grafting. Hortic Rev 35: 437-493. https://doi.org/10.1002/9780470593776.ch9

Nas MN, Gokbunar L, Sevgin N, Aydemir M, Dagli M, Susluoglu Z, 2012. Micropropagation of mature Crataegus aronia L., a medicinal and ornamental plant with rootstock potential for pome fruit. Plant Growth Regul 67: 57-63. https://doi.org/10.1007/s10725-012-9662-x

Öztürk A, 2021. The effects of different rootstocks on the graft success and scion development of some pear cultivars. Int J Fruit Sci 21: 932-944. https://doi.org/10.1080/15538362.2021.1948376

Payne JA, Krewer GW, 1990. Mayhaw: A new fruit crop for the south. In: Advances in new crops; Janick J & Simon JE (eds.). pp: 317-321. Timber, Portland, USA.

Pio R, Chagas EA, Tombolato AFC, 2008. Interspecific and intergeneric pear, apple and quince grafting using Pyrus calleryana as rootstock. Acta Hortic 800: 173-178. https://doi.org/10.17660/ActaHortic.2008.800.97

Rasool A, Mansoor S, Bhat KM, Hassan GI, Baba TR, Alyemeni MN, et al., 2020. Mechanisms underlying graft union formation and rootstock scion interaction in horticultural plants. Front Plant Sci 11: 590847. https://doi.org/10.3389/fpls.2020.590847

Reig G, Zarrouk O, Font i Forcada C, Moreno MA, 2018a. Anatomical graft compatibility study between apricot cultivars and different plum based rootstocks. Sci Hortic 237: 67-73. https://doi.org/10.1016/j.scienta.2018.03.035

Reig G, Font i Forcada C, Mestre L, Betrán JA, Moreno MA, 2018b. Potential of new Prunus cerasifera based rootstocks for adapting under heavy and calcareous soil conditions. Sci Hortic 234: 193-200. https://doi.org/10.1016/j.scienta.2018.02.037

Reig G, Salazar A, Zarrouk O, Font i Forcada C, Val J, Moreno MÁ, 2019. Long-term graft compatibility study of peach-almond hybrid and plum based rootstocks budded with European and Japanese plums. Sci Hortic 243: 392-400. https://doi.org/10.1016/j.scienta.2018.08.038

Ünal A, Özçağıran R, 1986. A study on the occurrence of graft union in the budding. Doğa Turk J Agric For 10: 397-407.

Velasco-Hernández A, Saucedo-Veloz C, Nieto-Ángel R, Ramírez-Guzmán ME, Saucedo-Reyes D, Nieto-López EH, 2017. Fruit growth, maturation, and shelf life of two cultivars of tejocote (Crataegus mexicana Moc. & Sessé). Fruits 72: 74-81. https://doi.org/10.17660/th2017/72.2.2

Wu M, Liu L, Xing Y, Yang S, Li H, Cao Y, 2020. Roles and mechanisms of hawthorn and its extracts on atherosclerosis: A review. Front Pharmacol 11: 118. https://doi.org/10.3389/fphar.2020.00118

Yildirim AN, Polat M, Dolgun O, Aşkin MA, Gökbayrak Z, Şan B, 2010. Graft formation in some spur and vigorous apple varieties grafted on Ottawa 3 rootstock: A histological investigation. J Food Agric Environ 8: 512-514.

Zarei A, Erfai-Moghadam J, Mozaffari M, 2017. Phylogenetic analysis among some pome fruit trees of Rosaceae family using RAPD markers. Biotechnol Biotechnol Equip 31: 289-298. https://doi.org/10.1080/13102818.2016.1276414

Zarrouk O, Pinochet J, Gogorcena Y, Moreno MÁ, 2006. Graft compatibility between peach cultivars and Prunus rootstocks. HortScience 41: 1389-1394. https://doi.org/10.21273/HORTSCI.41.6.1389

Zarrouk O, Testillano PS, Risueño MC, Moreno MÁ, Gogorcena Y, 2010. Changes in cell/tissue organization and peroxidase activity as markers for early detection of graft incompatibility in peach/plum combinations. J Am Soc Hortic Sci 135: 9-17. https://doi.org/10.21273/JASHS.135.1.9

Published
2022-10-10
How to Cite
Kacal, E., Caliskan, O., Ozturk , G., Gur, I., Kocal, H., Karamursel, O. F., Kilic, D., & Moreno, M.- Ángeles. (2022). Early detection of graft-incompatibility in hawthorn (Crataegus azarolus L.) trees on apple, pear, and quince rootstocks. Spanish Journal of Agricultural Research, 20(4), e0903. https://doi.org/10.5424/sjar/2022204-19567
Section
Plant production (Field and horticultural crops)