Larvicidal effect of an N-isobutyl-(2E,4E,8Z,10E/Z)-dodecatetraenamides-rich extract of Salmea scandens on fall armyworm

Keywords: bio-controllers, maceration, N-isobutyl-(2E,4E,8Z,10E/Z)-dodecatetraenamides, pest control, plant extract

Abstract

Aim of study: To determine if secondary metabolites present in an ethanolic extract of Salmea scandens could be considered as a viable alternative for the control of fall armyworm (Spodoptera frugiperda larvae), as this is the most important maize pest in terms of economic losses to agriculture worldwide.

Area of study: S. scandens shrubs were collected in San Rafael Toltepec, Oaxaca, Mexico. The laboratory assays were conducted at CIIDIR Oaxaca, and preliminary field assay was carried out in Zaachila Oaxaca.

Material and methods: N-isobutyl-(2E,4E,8Z,10E/Z)-dodecatetraenamides-rich extract of S. scandens, corroborated by nuclear magnetic resonance (1H NMR and 13C NMR) and Fourier transform infrared (FTIR), was obtained from S. scandens by 10-day maceration in ethanol. The effect of the extract on the mortality of S. frugiperda larvae was investigated in the laboratory (in vitro) by topical application, and in the field (in situ), testing both topical and spraying applications.

Main results: The 1H NMR, 13C NMR and FTIR spectra evidenced the obtention of the alkylamides-rich ethanol extract of S. scandens. Mortality of S. frugiperda in vitro increased with dose and monitoring time, reaching up to 80%. Under field conditions 63% of mortality was recorded at a dose of 0.30 mg µL-1 per larva by topical application, and 49% by spray application at a dose of 0.15 mg µL-1 per larva.

Research highlights: The ethanolic extract of S. scandens can be considered a viable alternative for controlling fall armyworm S. frugiperda.

Downloads

Download data is not yet available.

Author Biography

Pedro MONTES-GARCÍA, Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Hornos 1003, Santa Cruz Xoxocotlán, Oaxaca, 771230 Mexico

 

 

References

Abbas MY, Ejiofor JI, Yakub MI, 2018. Acute and chronic toxicity profiles of the methanol leaf extract of Acacia ataxacantha DC (Leguminosae) in Wistar rats. Bull Fac Pharmacy, Cairo University 56(2): 185-189. https://doi.org/10.1016/j.bfopcu.2018.09.001

Abbott WS, 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol 18(2): 265-267. https://doi.org/10.1093/jee/18.2.265a

AOAC, 2000. Official methods of analysis (20th ed). Association of Official Analytical Chemists, Washington DC, USA.

Barrett B, 2003. Medicinal properties of Echinacea: a critical review. Phytomedicine 10(1): 66-86. https://doi.org/10.1078/094471103321648692

Bauer R, Remiger P, 1989. TLC and HPLC analysis of alkamides in Echinacea drugs. Planta Medica 55(4): 367-371. https://doi.org/10.1055/s-2006-962030

Bauer R, Remiger P, Wagne H, 1988. Alkamides from the roots of Echinacea purpurea. Phytochemistry 27(7): 2339-2342. https://doi.org/10.1016/0031-9422(88)80156-0

Behle RW, Popham HJ, 2012. Laboratory and field evaluations of the efficacy of a fast-killing baculovirus isolate from Spodoptera frugiperda. J Invert Pathol 109(2): 194-200. https://doi.org/10.1016/j.jip.2011.11.002

Belay DK, Huckaba RM, Foster JE, 2012. Susceptibility of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), at Santa Isabel, Puerto Rico, to different insecticides. Florida Entomologist 95(2): 476-478. https://doi.org/10.1653/024.095.0232

Boonen J, Bronselaer A, Nielandt J, Veryser L, De Tre G, De Spiegeleer B, 2012. Alkamid database: Chemistry, occurrence and functionality of plant N-alkylamides. J Ethnopharmacol 142(3): 563-590. https://doi.org/10.1016/j.jep.2012.05.038

Brazzel JR, 1970. Second conference on test methods for resistance in insects of agricultural importance. Bull Entomol Soc Am 16: 147-153. https://doi.org/10.1093/besa/16.3.147

Bullangpoti V, Wajnberg E, Audant, P, Feyereisen R, 2012. Antifeedant activity of Jatropha gossypifolia and Melia azedarach senescent leaf extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use as synergists. Pest Manage Sci 68(9): 1255-1264. https://doi.org/10.1002/ps.3291

CABI, 2020. Invasive Species Compendium. Datasheet Spodoptera frugiperda (fall armyworm). CABI, Wallingford, UK.

Chowański S, Adamski Z, Marciniak P, Rosiński G, Büyükgüzel E, et al., 2016. A review of bioinsecticidal activity of Solanaceae alkaloids. Toxins 8(3): 60. https://doi.org/10.3390/toxins8030060

Clifford LJ, Nair MG, Rana Dewitt DL, 2002. Bioactivity of alkamides isolated from Echinacea purpurea (L.) Moench. Phytomedicine 9(3): 249-253. https://doi.org/10.1078/0944-7113-00105

Dallazen JL, Maria-Ferreira D, da Luz BB, Nascimento AM, Cipriani TR, de Souza LM, et al., 2018. Distinct mechanisms underlying local antinociceptive and pronociceptive effects of natural alkylamides from Acmella oleracea compared to synthetic isobutylalkyl amide. Fitoterapia 131: 225-235. https://doi.org/10.1016/j.fitote.2018.11.001

De Souza Tavares W, Cruz I, Petacci F, de Assis Júnior SL, de Sousa Freitas S, et al., 2009. Potential use of Asteraceae extracts to control Spodoptera frugiperda (Lepidoptera: Noctuidae) and selectivity to their parasitoids Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) and Telenomus remus (Hymenoptera: Scelionidae). Ind Crops Prod 30: 384-388. https://doi.org/10.1016/j.indcrop.2009.07.007

FAO, 2018. Integrated management of the fall armyworm on maize. A guide for farmer field schools in Africa. http://www.fao.org/3/I8665EN/i8665en.pdf. [5 Feb 2020).

Fotso-Kuate A, Hanna R, Doumtsop-Fotio AR, Abang AF, Nanga SN, et al., 2019. Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) in Cameroon: Case study on its distribution, damage, pesticide use, genetic differentiation and host plants. PloS one 14(4): e0215749. https://doi.org/10.1371/journal.pone.0215749

Greger H, 1984. Alkamides: Structural relationships, distribution and biological activity 1. Planta Medica 50(5): 366-375. https://doi.org/10.1055/s-2007-969741

Greger H, 2016. Alkamides: a critical reconsideration of a multifunctional class of unsaturated fatty acid amides. Phytochem Rev 15(5): 729-770. https://doi.org/10.1007/s11101-015-9418-0

Guzmán Prada DA, Rodríguez Chalarc J, Valencia Cataño SJ, 2016. Identificación de estadios larvales de lepidópteros: Plaga de maíz. CIAT, Cali, Colombia. 48 pp.

Henderson CF, Tilton EW, 1955. Tests with acaricides against the brown wheat mite. J Econ Entomol 48(2): 157-161. https://doi.org/10.1093/jee/48.2.157

Jayaraj R, Megha P, Sreedev P, 2016. Organochlorine pesticides, their toxic effects on living organisms Kortbeek and their fate in the environment. Interdisc Toxicol 9: 90-100. https://doi.org/10.1515/intox-2016-0012

Kortbeek RW, van der Gragt M, Bleeker PM, 2019. Endogenous plant metabolites against insects. Eur J Plant Pathol 154(1): 67-90. https://doi.org/10.1007/s10658-018-1540-6

Kumar RM, Gadratagi BG, Paramesh V, Kumar P, Madivalar Y, Narayanappa N, et al., 2022. Sustainable management of invasive fall armyworm, Spodoptera frugiperda. Agronomy 12(9): 2150. https://doi.org/10.3390/agronomy12092150

Labinas AM, Crocomo WB, 2002. Effect of Java grass (Cymbopogon winterianus Jowitt) essential oil on fallarmyworm Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera, Noctuidae). Acta Sci Maringa 24: 1401-1405. https://doi.org/10.4025/actasciagron.v24i0.2388

Liu Y, Murphy PA, 2007. Alkamide stability in Echinacea purpurea extracts with and without phenolic acids in dry films and in solution. J Agr Food Chem 55(1): 120-126. https://doi.org/10.1021/jf0619481

Logita HH, 2015. Natural insecticides and phytochemical analysis of gaggassa (Agarista salicifolia) plant leaves against brown banded cockroach. J Med Plants Res 9(46): 1111-1117. https://doi.org/10.5897/JMPR2015.5963

Ncube B, Finnie JF, Van Staden J, 2012.Quality from the field: the impact of environmental factors as quality determinants in medicinal plants. South Afr J Bot 82: 11-20. https://doi.org/10.1016/j.sajb.2012.05.009

Ottea JA, Payn GT, Bloomquist JR, Soderlund DM, 1989. Activation of sodium channels and inhibition of [3H]batrachotoxinin A-20-alpha-benzoate binding by an N-alkylamide neurotoxin. Mol Pharmacol 36(2): 280-284.

Ottea JA, Payne GT, Soderlund DM, 1990. Action of insecticidal N-alkylamides at site 2 of the voltage-sensitive sodium channel. J Agr Food Chem 38(8): 1724-1728. https://doi.org/10.1021/jf00098a021

Pacheco-Esteva MC, 2018. Estudio de la actividad plaguicida de extractos de Salmea scandens en Spodoptera frugiperda, Diabrotica balteata y Cerotoma ruficornis as a function of the alkylamide content. Unpublished MEng. Thesis. CIIDIR Oaxaca, Instituto Politécnico Nacional, Mexico (in Spanish).

Phambala K, Tembo Y, Kabambe VH, Stevenson P, Belmain SR, 2020. Bioactivity of common pesticidal plants on fall armyworm larvae (Spodoptera frugiperda). Plants 9(1): 112. https://doi.org/10.3390/plants9010112

Ponsankar A, Vasantha-Srinivasan P, Senthil-Nathan S, Thanigaivel A, Edwin ES, et al., 2016. Target and non-target toxicity of botanical insecticide derived from Couroupita guianensis L. flower against generalist herbivore, Spodoptera litura Fab. and an earthworm, Eisenia foetida Savigny. Ecotoxicol Environ Saf 133: 260-270. https://doi.org/10.1016/j.ecoenv.2016.06.043

Prasad KN, Yang E, Yi C, Zhao M, Jiang Y, 2009. Effects of high-pressure extraction on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp. Innov Food Sci Emerg Technol 10(2): 155-159. https://doi.org/10.1016/j.ifset.2008.11.007

Ramsewak RS, Erickson AJ, Nair MG, 1999. Bioactive N-isobutylamides from the flower buds of Spilanthes acmella. Phytochemistry 51(6): 729-732. https://doi.org/10.1016/S0031-9422(99)00101-6

Rios MY, 2012. Natural alkamides: pharmacology, chemistry and distribution. In: Drug discovery research in Pharmacognosy. InTech, Rijeka, pp: 107-144.

Risco GVS, Idrogo CR, Kato MJ, Díaz JS, Armando-Jr, et al. 2012. Larvicidal activity of Piper tuberculatum on Spodoptera frugiperda (Lepidoptera: Noctuidae) under laboratory conditions. Rev Colomb Entomol 38(1): 35-41. https://doi.org/10.25100/socolen.v38i1.8915

Sharma A, Kumar V, Rattan RS, Kumar N, Singh B, 2012. Insecticidal toxicity of spilanthol from Spilanthes acmella Murr. Against Plutella xylostella L. Am J Plant Sci 3(11): 1568-1572. https://doi.org/10.4236/ajps.2012.311189

Silva SM, Cunh JPARD, Carvalho SMD, Zandonadi CHS, Martins R, et al., 2017. Ocimum basilicum essential oil combined with deltamethrin to improve the management of Spodoptera frugiperda. Ciênc Agrotecn 41: 665-675. https://doi.org/10.1590/1413-70542017416016317

Sisay B, Tefera T, Wakgari M, Ayalew G, Mendesil E, 2019. The efficacy of selected synthetic insecticides and botanicals against fall armyworm, Spodoptera frugiperda, in maize. Insects 10(2): 45. https://doi.org/10.3390/insects10020045

Spelman K, Wetschler MH, Cech NB, 2009. Comparison of alkylamide yield in ethanolic extracts prepared from fresh versus dry Echinacea purpurea utilizing HPLC-ESI-MS. J Pharm Biomed Anal 49(5): 1141-1149. https://doi.org/10.1016/j.jpba.2009.02.011

Teke GN, Kuete V, 2014. Acute and subacute toxicities of African medicinal plants. In: Toxicological survey of African medicinal plants. Elsevier, pp: 63-98. https://doi.org/10.1016/B978-0-12-800018-2.00005-4

Villa-Ruano N, Pacheco-Hernández Y, Rubio-Rosa E, 2015. Essential oil composition and biological pharmacological properties of Salmea scandens (L.) DC. Food Control 57: 177-184. https://doi.org/10.1016/j.foodcont.2015.04.018

Walia S, Saha S, Tripathi V, Sharma KK, 2017. Phytochem Rev 16(5): 989-1007. https://doi.org/10.1007/s11101-017-9512-6

Wynendaele E, De Spiegeleer B, Gevaert B, Janssens Y, Suleman S, Cattoor S, et al., 2018. Regulatory status of N-alkylamide containing health products. Regul Toxicol Pharmacol 98: 215-223. https://doi.org/10.1016/j.yrtph.2018.07.003

Wilson K, Grzywacz D, Curcic I, Scoates F, Harper K, Rice A, et al., 2020. A novel formulation technology for baculoviruses protects biopesticide from degradation by ultraviolet radiation. Scientific Reports 10: 13301. https://doi.org/10.1038/s41598-020-70293-7

Published
2023-10-10
How to Cite
PACHECO-ESTEVA, M. C., SOTO-CASTRO, D., RUIZ-VEGA, J., OCHOA, M. E., & MONTES-GARCÍA, P. (2023). Larvicidal effect of an N-isobutyl-(2E,4E,8Z,10E/Z)-dodecatetraenamides-rich extract of Salmea scandens on fall armyworm. Spanish Journal of Agricultural Research, 21(4), e1002. https://doi.org/10.5424/sjar/2023214-20275
Section
Plant protection