Ex vitro propagation and phytochemical analysis of Serapias vomeracea (Burm.f.) Briq.: contribution to the conservation of Orchidaceae species
Abstract
Aim of study: The primary objective of this study was to investigate the seed germination and antioxidant propertiesof Serapias vomeracea (Burm.f.) Briq. Specifically, the aims of the research were to explore the influence of the Tulasnellaceae spp, fungal isolate SVL-30 (MK250656), on germination and seedling development, compare antioxidant activity to that of ascorbic acid, analyse the phytochemical composition, and identify bioactive compounds present in the methanol extract.
Area of study: University of Ondokuz Mayıs, Faculty of Sciences, Department of Biology, Samsun, Türkiye.
Materials and methods: Pots containing S. vomeracea and SVL-30 fungus, along with a control group without fungus, were utilized for the experiment. The impact of the fungus on germination stages and seedling development was assessed. Antioxidant analysis involved determining phenolic and flavonoid content, as well as DPPH radical scavenging activity (IC50: 2.09 mg/mL). Chlorophyll and carotenoid contents were measured to evaluate the physiological health of the plant. GC-MS analysis was employed to identify 19 bioactive compounds present in the methanol extract.
Main results: The fungus significantly stimulated germination, with 83.02% of seeds germinating, and 52.66%
progressing to the seedling stage. Antioxidant analysis revealed substantial phenolic and flavonoid content in S. vomeracea seedlings, demonstrating potent antioxidant properties comparable to ascorbic acid. Chlorophyll and carotenoid contents emphasized the balanced and healthy physiology of the plant. GC-MS analysis identified 19 bioactive compounds in the methanol extract, highlighting the potential bioactivity of S. vomeracea.
Research highlights: This study furnishes valuable information on the germination, phytochemical composition, and antioxidant capacity of S. vomeracea seedlings. The research underscores the potential bioactivity of the plant, substantiated by the identification of bioactive compounds. The findings lay the groundwork for further exploration of the potential health benefits of S. vomeracea. A strategic shift towards studies emphasizing sustainable agricultural practices is recommended, aiming to balance both conservation and utilization objectives.
Downloads
References
Acemi A, 2020. Chitosan versus plant growth regulators: A comparative analysis of their effects on in vitro development of Serapias vomeracea (Burm. f.) Briq. Plant Cell, Tissue, and Organ Culture 141: 327-338. https://doi.org/10.1007/s11240-020-01789-3
Acemi A, Özen F, 2019. Optimization of asymbiotic seed germination protocol for. The EuroBiotech Journal 3(3): 143-151. https://doi.org/10.2478/ebtj-2019-0017
Aewsakul N, Maneesorn D, Serivichyaswat P, Taluengjit A, Nontachaiyapoom S, 2013. Ex vitro symbiotic seed germination of Spathoglottis plicata Blume on common orchid cultivation substrates. Scientia Horticulturae 160: 238-242. https://doi.org/10.1016/j.scienta.2013.05.034
Aytar E, Akata I, Açık L, 2020. Antimicrobial and antiproliferative activity of Suıllus Luteus (L.) Roussel extracts. Ankara Universitesi Eczacilik Fakultesi Dergisi 44(3): 373-387. https://doi.org/10.33483/jfpau.707014
Aytar EC, Kömpe YÖ, 2023. Effect of different substrates on in vitro symbiotic seed germination for soilless production of Anacamptis laxiflora orchid. Acta Botanica Croatica 82(2):101-108. https://doi.org/10.37427/botcro-2023-010
Aytar EC, Kömpe YO, 2024. Cultivation of Serapias orientalis plant using symbiotic methods and investigation of bioactive compounds. ACS Agricultural Science & Technology 4(4): 424-431. https://doi.org/10.1021/acsagscitech.3c00458
Baumann H, 1989. Die Gattung Serapias L.-eine taxonomische Ubersicht. Mitteilungsblatt Beitrage zur Erhaltung Erforschung heimischer. Orchideen, 21: 701-946.
Cai Y, Luo Q, Sun M, Corke H, 2004. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences 74(17):2157-2184. https://doi.org/10.1016/j.lfs.2003.09.047
Camilleri L, Debono K, Grech F, Bellia AF, Pace G, Lanfranco S, 2024. Topographic complexity is a principal driver of plant endemism in Mediterranean Islands. Plants 13(4): 546. https://doi.org/10.3390/plants13040546
Chen Y, Goodale UM, Fan XL, Gao JY, 2015. Asymbiotic seed germination and in vitro seedling development of Paphiopedilum spicerianum: An orchid with an extremely small population in China. Global Ecology and Conservation 3:367-378. https://doi.org/10.1016/j.gecco.2015.01.002
Clements M, Cribb P, 1984. The underground orchids of Australia. The Kew Magazine 84-91.
Dafni A, Ivri Y, Brantjes NBM, 1981. Pollınatıon of Serapıas Vomeracea Briq. (Orchıdaceae) by imıtatıon of holes for sleepıng solıtary male bees (Hymenoptera). Acta Botanica Neerlandica 30(1-2):69-73.
D’Auria M, Lorenz R, Mecca M, Racioppi R, Romano VA, 2021. The composition of the aroma of Serapias orchids in Basilicata (Southern Italy). Natural Product Research 35(21):4068-4072. https://doi.org/10.1080/14786419.2020.1713127
Delforge P, 1994. Guide des orchidées d'Europe, d'Afrique du Nord et du Proche-Orient. Lausanne: Delachaux et Niestlé.
Deniz İG, Kömpe YÖ, Harzli I, Aytar EC, Mutlu VA, Uysal D, 2022. From seed to flowering tuberous orchid using ex vitro symbiotic seed germination: A breakthrough study with Anacamptis sancta. Rhizosphere 24:100597. https://doi.org/10.1016/j.rhisph.2022.100597
Ebrahimi P, Shokramraji Z, Tavakkoli S, Mihaylova D, Lante A, 2023. Chlorophylls as natural bioactive compounds existing in food by-products: A critical review. Plants 12(7): 1533. https://doi.org/10.3390/plants12071533
Ertürk O, Ayvaz MC, Cil E, Bagdatlı E, 2023. Gas Chromatography-Mass Spectrometry analysis and antimicrobial and antioxidant activities of some Orchid (Orchidaceae) species growing in Turkey. Brazilian Archives of Biology and Technology 66: e23210265. https://doi.org/10.1590/1678-4324-2023210265
Fay MF, 2018. Orchid conservation: how can we meet the challenges in the twenty-first century? Botanical Studies 59: 1-6. https://doi.org/10.1186/s40529-018-0232-z
Grubešić RJ, Vuković J, Kremer D, Vladimir-Knežević S, 2005. Spectrophotometric method for polyphenols analysis: Prevalidation and application on Plantago L. species. J Pharm Biomed Anal 39(3-4):837-842. https://doi.org/10.1016/j.jpba.2005.05.004
Kaladharan S, Rengasamy A, Chinnaiyan R, Mariappan M, Thiruppathi SK, 2024. In vitro asymbiotic seed germination and micropropagation of Dendrobium heyneanum Lindl. -an endemic orchid of Western Ghats, India. Plant Cell, Tissue, and Organ Culture 157(2): 1-12. https://doi.org/10.1007/s11240-024-02758-w
Kömpe YÖ, Mutlu VA, Özkoç I, Demiray S, Bozkurt S, 2022. Fungal diversity and ex vitro symbiotic germination of Serapias vomeracea (Orchidaceae). Acta Botanica Croatica 81(1):108-116. https://doi.org/10.37427/botcro-2022-008
Lanzino M, Palermo AM, Pellegrino G, 2023. Pollination mechanism in Serapias with no pollinaria reconfiguration. AoB Plants 15(5):1-8. https://doi.org/10.1093/aobpla/plad054
Lichtenthaler HK, 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol 148(C):350-382.
McCormick MK, Whigham DF, Canchani‐Viruet A, 2018. Mycorrhizal fungi affect orchid distribution and population dynamics. New Phytologist 219(4): 1207-1215. https://doi.org/10.1111/nph.15223
Mahmud I, Nazmul H, Zilani N, Nath B, Bokshi B, 2017. Bioactivities of Bruguiera gymnorrhiza and profiling of its bioactive polyphenols by HPLC-DAD. Clinical Phytoscience 3(1):1-11. https://doi.org/10.1186/s40816-017-0048-5
Melis A, Harvey GW, 1981. Regulation of photosystem stoichiometry, chlorophyll a and chlorophyll b content and relation to chloroplast ultrastructure. Biochimica et Biophysica Acta (BBA)-Bioenergetics 637(1): 138-145.
Oki T, Masuda M, Kobayashi M, Nishiba Y, Furuta S, Suda I, Sato T, 2002. Polymeric procyanidins as radical-scavenging components in red-hulled rice. Journal of Agricultural and Food Chemistry 0(26):7524-7529. https://doi.org/10.1021/jf025841z
Pellegrino G, Mahmoudi M, Palermo AM, 2021, Pollen viability of Euro‐Mediterranean orchids under different storage conditions: The possible effects of climate change. Plant Biology 23(1): 140-147. https://doi.org/10.1111/plb.13185
Price ML, Scoyoc S Van, Butler LG, 1978. A Critical Evaluation of the Vanillin Reaction as an assay for tannin in sorghum grain. Journal of Agricultural and Food Chemistry 26(5):1214-1218.
Rasmussen HN, Whigham DF, 1993. Seed ecology of dust seeds in situ: a new study technique and its application in terrestrial orchids American Journal of Botany 80(12):1374-1378.
Sánchez-Gutiérrez AE, Soto-Zarazúa GM, España-Sánchez BL, Rodríguez-González S, Zamora-Castro S, 2023. Development of agar substitute formulated with mucilage and pectin from opuntia local waste matter for cattleya sp. Orchids In Vitro Culture Media 11(3):717. https://doi.org/10.3390/pr11030717
Singleton VL, Rossi JA, 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents American Journal of Enology and Viticulture 16(3):144-158.
Shao SC, Jacquemyn H, Selosse, MA, 2024. Improved use of mycorrhizal fungi for upscaling of orchid cultivation and population restoration of endangered orchids in China. Symbiosis 92(2): 149-158. https://doi.org/10.1007/s13199-024-00974-8
Swarts ND, Dixon KW, 2009. Terrestrial orchid conservation in the age of extinction. Annals of Botany 104(3):543-556. https://doi.org/10.1093/aob/mcp025
Thompson JD, 2005. Plant evolution in the Mediterranean. Oxford University Press, Oxford.
Tokuhara K, Sato H, Abe A, Mii M, 2023. In vitro optimization of seed germination and protocorm development in Gastrochilus japonicus (Makino) Schltr. (Orchidaceae). Plant Growth Regulation 101(3):693-702. https://doi.org/10.1007/s10725-023-01050-9
Tsiftsis S, Kindlmann P, 2023. Advances in orchid research in East Macedonia (NE Greece) and the importance of current data in furthering our understanding of the orchids’ altitudinal requirements. Journal for Nature Conservation 72:126346. https://doi.org/10.1016/j.jnc.2023.126346
Vereecken, NJ, CozzolinoS, & Schiestl FP, 2010. Hybrid floral scent novelty drives pollinator shift in sexually deceptive orchids. BMC Evolutionary Biology 10: 1-12. https://doi.org/10.1186/1471-2148-10-103
Wraith J, Norman P, Pickering C, 2020. Orchid conservation and research: An analysis of gaps and priorities for globally Red Listed species. Ambio 49(10):1601-1611. https://doi.org/10.1007/s13280-019-01306-7
Copyright (c) 2024 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.