Artificial neural networks for simulating wind effects on sprinkler distribution patterns
Abstract
A new approach based on Artificial Neural Networks (ANNs) is presented to simulate the effects of wind on the distribution pattern of a single sprinkler under a center pivot or block irrigation system. Field experiments were performed under various wind conditions (speed and direction). An experimental data from different distribution patterns using a Nelson R3000 Rotator® sprinkler have been split into three and used for model training, validation and testing. Parameters affecting the distribution pattern were defined. To find an optimal structure, various networks with different architectures have been trained using an Early Stopping method. The selected structure produced R2= 0.929 and RMSE = 6.69 mL for the test subset, consisting of a Multi-Layer Perceptron (MLP) neural network with a backpropagation training algorithm; two hidden layers (twenty neurons in the first hidden layer and six neurons in the second hidden layer) and a tangent-sigmoid transfer function. This optimal network was implemented in MATLAB® to develop a model termed ISSP (Intelligent Simulator of Sprinkler Pattern). ISSP uses wind speed and direction as input variables and is able to simulate the distorted distribution pattern from a R3000 Rotator® sprinkler with reasonable accuracy (R2> 0.935). Results of model evaluation confirm the accuracy and robustness of ANNs for simulation of a single sprinkler distribution pattern under real field conditions.Downloads
References
Anonymous, 2008. Water application solutions for centre pivot irrigation. Nelson Irrigation Co. Available online in http://www.nelsonirrigation.com/data/products/Pivot_pocketguide4.pdf [6 September 2011].
ASAE,1985.Standard S398.1.Procedure for sprinkler testing and performance reporting. ASAE standards, ASABE, St Joseph, MI, USA.
Basheer IA, Hajmeer M, 2000. Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Meth 43: 3-31.
http://dx.doi.org/10.1016/S0167-7012(00)00201-3
Carrion P, Tarjuelo JM, Montero J, 2001. SIRIAS: a simulation model for sprinkler irrigation: I. Description of model. Irrig Sci 20: 73-84.
http://dx.doi.org/10.1007/s002710000031
Ciĝizoĝlu HK, 2002. Suspended sediment estimation for rivers using artificial neural networks and sediment rating curves. Turk J Eng Environ Sci 26: 27-36.
De Wrachien D, Lorenzini G, 2006. Modelling jet flow and losses in sprinkler irrigation: Overview and perspective of a new approach. Biosyst Eng 94(2): 297-309.
http://dx.doi.org/10.1016/j.biosystemseng.2006.02.019
Dechmi F, Playan E, Cavero J, Martinez-Cob A, Faci JM, 2004. Coupled crop and solid set sprinkler simulation model: I. Model development. J Irrig Drain Eng 130(6): 499-510.
http://dx.doi.org/10.1061/(ASCE)0733-9437(2004)130:6(499)
Fernando DAK, Jayawardana AW, 1998. Runoff forecasting using RBF networks with OLS algorithm. J Hydrol Eng 3(3): 203-209.
http://dx.doi.org/10.1061/(ASCE)1084-0699(1998)3:3(203)
Fukui Y, Nakanishi K, Okamura S, 1980.Computer evaluation of sprinkler irrigation uniformity. Irrig Sci 2: 23-32.
http://dx.doi.org/10.1007/BF00285427
Granier J, Molle B, Deumier JM, 2003. IRRIPARC-Part 1: Modeling spatial water distribution under a sprinkler in windy conditions – Utilization of the IRRIPARC methodology in 3 regions. Proc ICID Int Workshop on Improved Irrigation Technologies and Methods: Research, development and testing. Montpellier, France, pp: 14-19.
Han S, Evans RG, Kroeger MW, 1994. Sprinkler distribution patterns in windy conditions. T ASAE 37(5): 1481-1489.
Haykin S, 1999. Neural networks: A comprehensive foundation. Prentice-Hall Inc, Engelwood Cliffs NJ, USA.
Heermann DF, Duke HR, Serafim AM, Dawson LJ, 1992. Distribution function to represent center pivot water distribution. T ASAE 35(5): 1465-1472.
Hinnell AC, Lazarovitch N, Furman A, Poulton M, Warrick AW, 2010. Neuro-Drip: estimation of subsurface wetting patterns for drip irrigation using neural networks. Irrig Sci 28 (6): 535-544.
http://dx.doi.org/10.1007/s00271-010-0214-8
Hsu K, Gupta HV, Sorooshian S, 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resour Res 31(10): 2517-2530.
http://dx.doi.org/10.1029/95WR01955
ISO, 1995.ISO Standard 8026.Agricultural irrigation equipment-Sprayers-General requirements and test methods. ISO, Lethbridge, Alberta, Canada.
Jain SK, Singh VP, Van Genuchten MTh, 2004.Analysis of soil water retention data using artificial neural networks. J Hydrol Eng 9(5): 415-420.
http://dx.doi.org/10.1061/(ASCE)1084-0699(2004)9:5(415)
Karmeli D, 1978. Estimating sprinkler distribution patterns using linear regression. T ASAE 21: 682-686.
Karul C, Soyupak S, Cilesiz AF, Akbay N, German E, 2000. Case studies on the neural networks in eutrophication modeling. Ecol Model 134: 145-152.
http://dx.doi.org/10.1016/S0304-3800(00)00360-4
Keller J, Bliesner RD, 1990. Sprinkle and trickle irrigation. AVI Book, Van Nostrand Reinhold. New York.
http://dx.doi.org/10.1007/978-1-4757-1425-8
Khoob AR, 2007. Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig Sci 26(3): 253-259.
http://dx.doi.org/10.1007/s00271-007-0090-z
Kincaid DC, 2005. Application rates from center pivot irrigation with current sprinkler types. Appl Eng Agric 21(4): 605-610.
Lazarovitch N, Poulton M, Furman A, Warrick AW, 2009. Water distribution under trickle irrigation predicted using artificial neural networks. J Eng Math 64: 207-218.
http://dx.doi.org/10.1007/s10665-009-9282-2
Le Gat Y, Molle B, 2000. Model of water application under pivot sprinkler: I. Theoretical grounds. J Irrig Drain Eng 126(6): 343-347.
http://dx.doi.org/10.1061/(ASCE)0733-9437(2000)126:6(343)
Lorenzini G, 2004. Simplified modelling of sprinkler droplet dynamics. Biosyst Eng 87(1): 1-11.
http://dx.doi.org/10.1016/j.biosystemseng.2003.08.015
Maier HR, Dandy GC, 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ Model Softw 15: 101-124.
http://dx.doi.org/10.1016/S1364-8152(99)00007-9
Mathworks Inc., 2007.Neural network toolbox 5 user's guide, 9th printing, vers 5.The Mathworks Inc. Natick, MA, USA.
Molle B, Le Gat Y, 2000. Model of water application under pivot sprinkler: II. Calibration and results. J Irrig Drain Eng 126(6): 348-354.
http://dx.doi.org/10.1061/(ASCE)0733-9437(2000)126:6(348)
Montero J, Tarjuelo JM, Carrion P, 2001. SIRIAS: a simulation model for sprinkler irrigation: II. Calibration and validation of the model. Irrig Sci 20: 85-98.
Ozkan C, Kisi O, Akay B, 2011. Neural networks with artificial bee colony algorithm for modeling daily reference evapotranspiration. Irrig Sci 29(6): 431-441.
http://dx.doi.org/10.1007/s00271-010-0254-0
Playan E, Zapata N, Faci JM, Tolosa D, Lacueva JL, Pelegrin J, Salvador R, Sanchez I, Lafita A, 2006. Assessing sprinkler irrigation uniformity using a ballistic simulation model. Agr Water Manage 8(4): 89-100.
http://dx.doi.org/10.1016/j.agwat.2006.01.006
Richards PJ, Weatherhead EK, 1993. Prediction of raingun application patterns in windy conditions.J Agric Eng Res 54(4): 281-291.
http://dx.doi.org/10.1006/jaer.1993.1021
Schleiter IM, Borchardt D, Wagner R, Dapper T, Schmidt KD, Schmidt HH, Werner H, 1999. Modeling water quality bioindication and population dynamics in lotic ecosystems using neural networks. Ecol Model 120: 271-286.
http://dx.doi.org/10.1016/S0304-3800(99)00108-8
Schmitz GH, Schutze N, Petersohn U, 2002. New strategy for optimizing water application under trickle irrigation. J Irrig Drain Eng 128(5): 287-297.
http://dx.doi.org/10.1061/(ASCE)0733-9437(2002)128:5(287)
Seginer I, Nir D, Von Bernuth ED, 1991a. Simulation of wind-distorted sprinkler patterns.J Irrig Drain Eng 117(2): 285-306.
http://dx.doi.org/10.1061/(ASCE)0733-9437(1991)117:2(285)
Seginer I, Kantz D, Nir D, 1991b. The distortion by wind of the distribution patterns of single sprinklers. Agric Water Manage 19(4): 341-359.
http://dx.doi.org/10.1016/0378-3774(91)90026-F
Shresta RR, Theobald S, Nestmann F, 2005. Simulation of flood flow in a river system using artificial neural networks. Hydrol Earth Syst Sci 9(4): 313-321.
http://dx.doi.org/10.5194/hess-9-313-2005
Solomon K, Bezdek JC, 1980. Characterizing sprinkler distribution patterns with a clustering algorithm. T ASAE 23(4): 899-902.
Vories ED, Von Bernuth ED, Mickelson RH, 1987. Simulating sprinkler performance in wind. J Irrig Drain Eng 113(1): 119-130.
http://dx.doi.org/10.1061/(ASCE)0733-9437(1987)113:1(119)
Yan HJ, Bai G, He JQ, Li YL, 2010. Model of droplet dynamics and evaporation for sprinkler irrigation. Biosys Eng 106: 440-447.
http://dx.doi.org/10.1016/j.biosystemseng.2010.05.008
Yang CC, Prasher SO, Lacroix R, Sreekanth SRI, Patni NK, Masse L, 1997.Artificial neural network model for subsurface-drained farmlands. J Irrig Drain Eng 123(4): 285-292.
http://dx.doi.org/10.1061/(ASCE)0733-9437(1997)123:4(285)
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.