Carbon sequestration potential of residues of different types of cover crops in olive groves under mediterranean climate

  • M. A. Repullo-Ruibérriz de Torres Área de Producción Ecológica y Recursos Naturales IFAPA “Alameda del Obispo”, Apdo. 3092, 14080, Córdoba
  • R. Carbonell-Bojollo Área de Producción Ecológica y Recursos Naturales IFAPA “Alameda del Obispo”, Apdo. 3092, 14080, Córdoba
  • C. Alcántara-Braña Área de Producción Agraria, IFAPA “Alameda del Obispo”, Apdo. 3092, 14080, Córdoba
  • A. Rodríguez-Lizana Dpto. de Ingeniería Aeroespacial y Mecánica de Fluidos. Área de Ingeniería Agroforestal. Universidad de Sevilla, Carretera Sevilla-Utrera, km 1 41013. Sevilla
  • R. Ordóñez-Fernández Área de Producción Ecológica y Recursos Naturales IFAPA “Alameda del Obispo”, Apdo. 3092, 14080, Córdoba
Keywords: carbon release, cover crops, soil carbon fixation

Abstract

The maintenance of plant cover between olive grove lanes until the beginning of spring is a soil management alternative that is gradually being adopted by olive growers. As well as protecting the soil from erosion, plant covers have other advantages such as improving the physicochemical properties of the soil, favouring its biodiversity and contributing towards the capturing of atmospheric carbon and its fixation in the soil. A trial was conducted over three growing seasons in an olive plantation situated in southern Spain. It was designed to evaluate the C fixation potential of the residues of the cover species Brachypodium distachyon, Eruca vesicaria, Sinapis alba and of spontaneous weeds; and also to study the decomposition dynamics of plant residues after mowing cover. After 156 and 171 days of decomposition, the species that released the largest amount of C was Brachypodium with values of 2,157 and 1,666 kg ha-1 respectively, while the lowest values of 461 and 509 kg ha-1 were obtained by spontaneous weeds. During the third season (163 days of decomposition) and due to the weather conditions restricting the emergence and growth of cover, spontaneous weeds released the most C with a value of 1,494 kg ha-1. With respect to the fixation of C, Sinapis records the best results with an increase in soil organic C (SOC) concentration of 7,690 kg ha-1. Considering the three seasons and a depth of 20 cm, the behaviour sequence of the different species in favouring the fixation of soil organic C was Sinapis>Brachypodium>spontaneous weeds>Eruca.

Downloads

Download data is not yet available.

References

Agrela F, Gil JA, Girldez JV, Ordez R, Gonzlez P, 2003. Obtention of reference value in the measurement of the cover fraction in conservation agriculture systems. II World Congress on Conservation Agriculture. 11-15 Aug, Foz de Iguazu, Brazil, pp: 44-47.

Alcntara C, Snchez S, Pujadas A, Saavedra M, 2009. Brassica species as winter cover crops in sustainable agricultural systems in southern Spain. J Sustain Agric 33: 619-635.
http://dx.doi.org/10.1080/10440040903073693

Aulak M, Doran J, Walters D, Mosier A, Francis D, 1991. Crop residue type and placement effects on denitrification and mineralization. Soil Sci Soc Am J 55: 1020-1025.
http://dx.doi.org/10.2136/sssaj1991.03615995005500040022x

Ayed GM, Mohammad AA, 2010. The impact of vegetative cover type on runoff and soil erosion under different land uses. Catena 81: 97-103.
http://dx.doi.org/10.1016/j.catena.2010.01.008

Baggs EM, Ress RM, Smith KA, Vinten AJA, 2000. Nitrous oxide emission from soils after incorporating crop residues. Soil Use Manage 16: 82-87.
http://dx.doi.org/10.1111/j.1475-2743.2000.tb00179.x

Beaufoy G, 2002. The environmental impact of olive oil production in the European Union: practical options for improving the environmental impact. European Forum on Nature Conservation and Pastoralism.

Bowman WD, Billbrough CJ, 2004. Influence of a pulsed nitrogen supply on growth and nitrogen uptake in alpine graminoids. Plant Soil 233: 283-290.
http://dx.doi.org/10.1023/A:1010571920890

Bravo C, Torrent J, Girldez JV, Gonzlez P, Ordez R, 2007. Long-term effect of tillage on phosphorus forms and sorption in a Vertisol of southern Spain. Eur J Agron 25: 264-269.
http://dx.doi.org/10.1016/j.eja.2006.06.003

Castro J, Fernndez-Ondoo E, Rodrguez C, Lallena MS, Aguilar J, 2008. Effects of different olive-grove management systems on the organic carbon and nitrogen content of the soil in Jan (Spain). Soil Till Res 98: 5667.
http://dx.doi.org/10.1016/j.still.2007.10.002

Conservation Tillage Information Center, 1990. National survey of conservation tillage practices. Conserv Till Inf Center, Fort Wayne, IN, USA.

Crovetto C, 2002. Cero labranza. Los rastrojos, la nutricin del suelo y su relacin con la fertilidad de las plantas. Trama ed., Talcahuano, Chile, 225 pp.

Ernst O, Betancour O, Borges R, 2002. Descomposicin de rastrojo de cultivos en siembra sin laboreo: trigo, maz, soja y trigo despus de maz o de soja. Agrociencia-Uruguay VI(1): 20-26.

Francia J, Durn VH, Martnez A, 2006. Environmental impact from mountainous olive orchards under different soil-management systems (SE Spain). Sci Total Environ 358: 46-60.
http://dx.doi.org/10.1016/j.scitotenv.2005.05.036
PMid:15990157

Gajri PR, Arora VK, Prihar SS, 2002. Tillage for sustainable cropping. Food Prod Press, NY, 195 pp.

Gonzlez Snchez E, Ordez Fernndez R, Carbonell Bojollo R, Veroz Gonzlez O, Gil Ribes JA, 2012. Meta-analysis on atmospheric carbon capture in Spain through the use of conservation agriculture. Soil Till Res 122: 52-60.
http://dx.doi.org/10.1016/j.still.2012.03.001

Gregory JM, 1982. Soil cover prediction with various amounts and types of crop residues. T ASAE 25: 1333-1337.

Hatcher PE, Melander B, 2003. Combining physical, cultural and biological methods: prospect for integrated non-chemical weed management strategies. Weed Res 43: 303-322.
http://dx.doi.org/10.1046/j.1365-3180.2003.00352.x

Lpez MV, Arre JL, lvaro-Fuentes J, Moret D, 2005. Dynamics of surface barley residues during fallow as affected by tillage and decomposition in semiarid Aragon (NE Spain). Eur J Agron 23: 26-36.
http://dx.doi.org/10.1016/j.eja.2004.09.003

Loveland P, Webb J, 2003. Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. Soil Till Res 70: 1-18.
http://dx.doi.org/10.1016/S0167-1987(02)00139-3

Lyon DJ, 1998. Sunflower residue weight and ground cover during summer fallow. J Soil Water Cons 53(1): 7173.

MARM, 2010. Encuesta sobre superficies y rendimientos de cultivo. Resultados nacionales y autonmicos 2009. Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid. Available in http://www.mapa.es/es/estadistica/pags/encuestacultivos/resultados.htm [12-01-2011].

Mrquez F, Ordez R, Carbonell R, Veroz O, Snchez F, 2008. Contenido de materia orgnica en el perfil del suelo. Informe General 2003/2007 de Desarrollo de un Programa de Seguimiento para la Evaluacin de la Aplicacin de las Medidas de Fomento de Cubiertas Vegetales en Olivar de Andaluca. Asociacin Espaola Agricultura de Conservacin/Suelos Vivos, Crdoba.

Ordez R, Rodrguez-Lizana A, Carbonell R, Gonzlez P, Perea F, 2007. Dynamics of residues decomposition in the field in a dryland rotation under Mediterranean climate conditions in southern Spain. Nutr Cycl Agroecosyst 79: 243-253.
http://dx.doi.org/10.1007/s10705-007-9111-9

Pulleman MM, Six J, Van Breemen N, Jongman AG, 2005. Soil organic matter distribution and microaggregate characteristic as affected by agricultural management and earthworm activity. Eur J Soil Sci 56: 453-467.
http://dx.doi.org/10.1111/j.1365-2389.2004.00696.x

Rodrguez-Lizana A, Ordez R, Espejo-Prez AJ, Gonzlez P, 2007. Plant cover and control of diffuse pollution from P in olive groves. Water Air Soil Pollut 181: 17-34.
http://dx.doi.org/10.1007/s11270-006-9273-0

Ruffo ML, Bollero GA, 2003. Modeling rye and hairy vetch residue decomposition as a function of degree-days and decomposition-days. Agron J 95: 900-907.
http://dx.doi.org/10.2134/agronj2003.0900

Snelder DJ, Bryan RB, 1995. The use of rainfall simulation tests to assess the influence of vegetation density on soil loss on degraded rangeland in the Baringo District, Kenya. Catena 25: 105-116.
http://dx.doi.org/10.1016/0341-8162(95)00003-B

Soon YK, Arshad MA, 2002. Comparison of the decomposition and N and P mineralization of canola, pea and wheat residues. Biol Fertil Soils 36: 10-17.
http://dx.doi.org/10.1007/s00374-002-0518-9

Sparks DL, Page AL, Helmke PA, Loccpert RM, Sottanpour PN, Tabatai MA, Johnston CI, Summer ME (eds), 1996. Methods of soils analysis, Part 3: Chemical methods. Agronomy 53, Am Soc Agron, Madison, WI, USA.

Sparrow SD, Lewis CE, Knight CW, 2006. Soil quality response to tillage and crop residue removal under subarctic conditions. Soil Till Res 91: 15-21.
http://dx.doi.org/10.1016/j.still.2005.08.008

Steiner JL, Schomberg HH, Unger PW, Cresap J, 2000. Biomass and residue cover relationships of fresh and decomposing small grain residue. Soil Sci Soc Am J 64: 2109-2114.
http://dx.doi.org/10.2136/sssaj2000.6462109x

Thorburn DJ, Probert ME, Robertson FA, 2001. Modelling decomposition of sugar cane of surface residues with APSIM Residue. Field Crop Res 70: 223-232.
http://dx.doi.org/10.1016/S0378-4290(01)00141-1

Vachaud G, Passerat De Silane A, Balabanis P, Vauclin M, 1985. Temporal stability of spatially measured soil water probability density function. Soil Sci Soc Am J 49: 822827.
http://dx.doi.org/10.2136/sssaj1985.03615995004900040006x

Weiner TL, Pan WL, Moneymaker MR, Santo GS, Stevens RG, 2002. Nitrogen recycling by nonleguminous winter crops to reduce leaching in potato rotations. Agron J 88: 860-866.

Published
2012-07-09
How to Cite
Repullo-Ruibérriz de Torres, M. A., Carbonell-Bojollo, R., Alcántara-Braña, C., Rodríguez-Lizana, A., & Ordóñez-Fernández, R. (2012). Carbon sequestration potential of residues of different types of cover crops in olive groves under mediterranean climate. Spanish Journal of Agricultural Research, 10(3), 649-661. https://doi.org/10.5424/sjar/2012103-562-11
Section
Agricultural environment and ecology