Review. Technologies for robot grippers in pick and place operations for fresh fruits and vegetables

  • C. Blanes Instituto de de Automática e Informática Industrial. Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia. Spain
  • M. Mellado Instituto de de Automática e Informática Industrial. Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia. Spain
  • C. Ortiz Departamento de Ingeniería Rural y Agroalimentaria. Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia. Spain
  • A. Valera Instituto de de Automática e Informática Industrial. Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia. Spain
Keywords: food manipulation, horticulture grasp, postharvest science and technology, robotic product handling

Abstract

Robotics has been introduced in industry to replace humans in arduous and repetitive tasks, to reduce labour costs and to ensure consistent quality control of the process. Nowadays robots are cheaper, can work in hostile and dirty environments and they are able to manipulate products at high speed. High speed and reliability and low robot gripper costs are necessary for a profitable pick and place (P&P) process. However, current grippers are not able to handle these products properly because they have uneven shapes, are flexible and irregular, have different textures and are very sensitive to being damaged. This review brings together the requirements and phases used in the process of manipulation, summarises and analyses of the existing, potential and emerging techniques and their possibilities for the manipulation of fresh horticultural products from a detailed study of their characteristics. It considers the difficulties and the lack of engineers to conceive of and implement solutions. Contact grippers with underactuated mechanism and suction cups could be a promising approach for the manipulation of fresh fruit and vegetables. Ongoing study is still necessary on the characteristics and handling requirements of fresh fruit and vegetables in order to design grippers which are suitable for correct manipulation, at high speed, in profitable P&P processes for industrial applications. 

Downloads

Download data is not yet available.

Author Biography

C. Ortiz, Departamento de Ingeniería Rural y Agroalimentaria. Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia. Spain

 

References

Akella S., Mason M.T., 1999. Using partial sensor information to orient parts. Int J Robotics Res 18, 963-997. http://dx.doi.org/10.1177/02783649922067663

Akella S., Huang W.H., Lynch K.M., Mason M.T., 1997. Sensorless parts orienting with a one-joint manipulator. Proc Intl Conf Robot Automat. Albuquerque, New Mexico, USA, pp. 2383-2390. http://dx.doi.org/10.1109/ROBOT.1997.619318

Allende A., Desmet M., Vanstreels E., Verlinden B.E., Nicolai B.M., 2004. Micromechanical and geometrical properties of tomato skin related to differences in puncture injury susceptibility. Postharvest Biol Technol 34, 131-141. http://dx.doi.org/10.1016/j.postharvbio.2004.05.007

Amagai A., Takase K., 2002. Implementation of dynamic manipulation with visual feedback and its application to pick and place task. Proc 4th Intl Symp on Assembly and Task Planning. Fukuoka, Japan. pp. 344-350.

Bachmann J., Earles R., 2000. Postharvest handling of fruits and vegetables. Appropriate technology transfer for rural areas, Fayetteville, Arizona. pp. 1-19. [on line] Available in https://attra.ncat.org/attra-pub/viewhtml.php?id=378 [3 Oct, 2011].

Bajema R., Hyde G., Baritelle A., 1998. Temperature and strain rate effects on the dynamic failure properties of potato tuber tissue. T ASAE 41, 733-740.

Baksys B., Ramanauskytė K., Povilionis A.B., 2009. Vibratory manipulation of elastically unconstrained part on a horizontal plane. J Mechanika 1(75), 36-41.

Bar-Cohen Y., Leary S., Shahinpoor M., Harrison J., Smith J., 1999. Flexible low-mass devices and mechanisms actuated by electroactive polymers. Proc.SPIE, Bellingham 3669, 51-56.

Barreiro P., Steinmetz V., Ruiz-Altisent M., 1997. Neural bruise prediction models for fruit handling and machinery evaluation. Comput Electron Agric 18, 91-103. http://dx.doi.org/10.1016/S0168-1699(97)00022-7

Bicchi A., 2002. Hands for dexterous manipulation and robust grasping: A difficult road toward simplicity. Transactions on Robotics and Automation 16, 652-662. http://dx.doi.org/10.1109/70.897777

Bielza C., Barreiro P., Rodriguez-Galiano M., Martin J., 2003. Logistic regression for simulating damage occurrence on a fruit grading line. Comput Electron Agric 39, 95-113. http://dx.doi.org/10.1016/S0168-1699(03)00021-8

Bloss R., 2006. How do you quickly load cases and trays with tough to handle product? Ind Robot 33, 339-341. http://dx.doi.org/10.1108/01439910610684990

Brantmark H., Hemmingson E., 2001. FlexPicker with PickMaster revolutionizes picking operations. Ind Robot 28, 414-420. http://dx.doi.org/10.1108/EUM0000000005844

Brown E., Rodenberg N., Amend J., Mozeika A., Steltz E., Zakin M.R., Lipson H., Jaeger H.M., 2010. Universal robotic gripper based on the jamming of granular material. P Natl Acad Sci USA 107(44), 18809-18814. http://dx.doi.org/10.1073/pnas.1003250107 PMCid:2973877

Brusewitz G., Bartsch J., 1989. Impact parameters related to post harvest bruising of apples. T ASAE 32, 953-957.

Ceccarelli M., Nieto J., 1993. El agarre con pinzas de dos dedos. 1 Congreso Iberoamericano de Ingenieria Mecanica, Madrid 4, pp. 171-176. [In Spanish].

Ceccarelli M., Figliolini G., Ottaviano E., Mata A.S., Criado E.J., 2000. Designing a robotic gripper for harvesting horticulture products. Robotica 18, 105-111. http://dx.doi.org/10.1017/S026357479900226X

Chen P., Sun Z., 1991. A review of non-destructive methods for quality evaluation and sorting of agricultural products. J Agr Eng Res 49, 85-98. http://dx.doi.org/10.1016/0021-8634(91)80030-I

Chua P., Ilschner T., Caldwell D., 2003. Robotic manipulation of food products–a review. Ind Robot 30, 345-354. http://dx.doi.org/10.1108/01439910310479612

Davis S., Gray J., Caldwell D.G., 2008. An end effector based on the Bernoulli principle for handling sliced fruit and vegetables. Robot Comput Integrated Manuf 24, 249-257. http://dx.doi.org/10.1016/j.rcim.2006.11.002

Erzincanli F., Sharp J., 1997. A classification system for robotic food handling. Food Control 8, 191-197. http://dx.doi.org/10.1016/S0956-7135(97)00048-0

Feller R., Margolin E., Zacharin A., Pasternak H., 1985. Development of a clod separator for potato packing houses. T ASAE 28, 1019-1023.

Fischer I.H., Ferreira M.D., Spósito M.B., Amorim L., 2009. Citrus postharvest diseases and injuries related to impact on packing lines. Scientia Agrícola 66, 210-217. http://dx.doi.org/10.1590/S0103-90162009000200010

Foglia M.M., Reina G., 2006. Agricultural robot for radicchio harvesting. J Field Robotics 23, 363-377. http://dx.doi.org/10.1002/rob.20131

García-Ramos F., Ortiz-Cañavate J., Ruiz-Altisent M., 2004. Evaluation and correction of the mechanical aggressiveness of commercial sizers used in stone fruit packing lines. J Food Eng 63, 171-176. http://dx.doi.org/10.1016/S0260-8774(03)00297-8

Geyer M., Herold B., Truppel I., 2006. Online sensing the mechanical impacts of real perishables during handling. ASABE Paper number 063064.

Grunert K.G., 2005. Food quality and safety: consumer perception and demand. Eur Rev Agr Econ 32(3), 369-391. http://dx.doi.org/10.1093/eurrag/jbi011

Hamman K., 2007. Food sector specificities relevant for innovation, company growth and access to financing. [on line] Available in http://archive.europe-innova.eu/index.jsp?type=page&lg=en&cid=7677. [12 Apr 2011].

Han I., 2007. Vibratory orienting and separation of small polygonal parts. Proc. Inst. Mech. Eng. Pt. B: J Eng Manuf 221, 1743-1753. http://dx.doi.org/10.1243/09544054JEM846

Hauhouot-O'hara M., Criner B., Brusewitz G., Solie J., 2000. Selected physical characteristics and aerodynamic properties of cheat seed for separation from wheat. Agric Eng Intl: The CIGR Journal of Scientific Research and Development 2.

Hayashi S., Ganno K., Ishii Y., Tanaka I., 2002. Robotic harvesting system for eggplants. Japan Agric Res 36, 163-168.

Hayashi S., Shigematsu K., Yamamoto S., Kobayashi K., Kohno Y., Kamata J., Kurita M., 2010. Evaluation of a strawberry-harvesting robot in a field test. Biosyst Eng 105, 160-171. http://dx.doi.org/10.1016/j.biosystemseng.2009.09.011

Herold B., Truppel I., Siering G., Geyer M., 1996. A pressure measuring sphere for monitoring handling of fruit and vegetables. Comput Electron Agric 15, 73-88. http://dx.doi.org/10.1016/0168-1699(96)00004-X

Hirose S., Umetani Y., 1978. The development of soft gripper for the versatile robot hand. Mechanism and Machine Theory 13, 351-359. http://dx.doi.org/10.1016/0094-114X(78)90059-9

Huang W.H., Mason M.T., 1997. Mechanics for vibratory manipulation. Robotics and automation. Intl Conf Robot 604 Automat, Albuquerque, New Mexico, USA, pp. 2391-2396.

Kader A.A., 1983. Influence of harvesting methods on quality of deciduous tree fruits. HortScience 18, 409-411.

Kondo N., 2010. Automation on fruit and vegetable grading system and food traceability. Trends Food Sci Technol 21, 145-152. http://dx.doi.org/10.1016/j.tifs.2009.09.002

Kordi M.T., Husing M., Corves B., 2007. Development of a multifunctional robot end-effector system for automated manufacture of textile performs. Advanced intelligent mechatronics, IEEE/ASME Intl Conf 1-6.

Lewis R., Yoxall A., Marshall M., Canty L., 2008. Characterising pressure and bruising in apple fruit. Wear 264, 37-46. http://dx.doi.org/10.1016/j.wear.2007.01.038

Lichtensteiger M., Holmes R., Hamdy M., Blaisdell J., 1988. Evaluation of Kelvin model coefficients for viscoelastic spheres. T ASAE 31, 288-292.

Maldonado A.I.L., 2010. Automation and robots for handling, storing and transporting fresh horticulture produce. Stewart Postharvest Review 6, 1-6. http://dx.doi.org/10.2212/spr.2010.3.14

Mantriota G., 2007a. Theoretical model of the grasp with vacuum gripper. Mechanism and Machine Theory 42, 2-17. http://dx.doi.org/10.1016/j.mechmachtheory.2006.03.003

Mantriota G., 2007b. Optimal grasp of vacuum grippers with multiple suction cups. Mechanism and Machine Theory 42, 18-33. http://dx.doi.org/10.1016/j.mechmachtheory.2006.02.007

Meijneke C., Kragten G., Wisse M., 2011. Design and performance assessment of an underactuated hand for industrial applications. [on line]. Available www.mech-sci.net/2/9/2011/ [12 Apr 2011].

Menesatti P., Paglia G., 2001. PH-Postharvest technology: development of a drop damage index of fruit resistance to damage. J Agr Eng Res 80, 53-64. http://dx.doi.org/10.1006/jaer.2000.0669

Mercado-Flores J., López-Orozco M., Martínez-Soto G., Alcántara-González L., Garnica-Rodríguez B., 2005. Aplicación del modelo de contacto de Hertz para la determinación del módulo de elasticidad y del módulo de Poisson en frutos cítricos: lima, limón, naranja y tangerina. VII Congreso Nacional de Ciencia de los Alimentos. Guanajuato, Mexico, pp. 367-373 [In Spanish].

Monkman G.J., Hesse S., Steinmann R., Schunk H., 2007. Robot grippers. Ed Wiley-VCH, Weinhein. Chap 3.

Monta M., Kondo N., Ting K., 1998a. End-effectors for tomato harvesting robot. Artif Intell Rev 12, 11-25. http://dx.doi.org/10.1023/A:1006595416751

Monta M., Kondo N., Ting K., Giacomelli G., Mears D., Kim Y., Ling P., 1998b. Harvesting endeffector for inverted single truss tomato production systems. J Jpn Soc Agr Machin 60, 97-104.

Morrow C., Mohsenin N., 1968. Dynamic viscoelastic characterization of solid food materials. J Food Sci 33, 646-651. http://dx.doi.org/10.1111/j.1365-2621.1968.tb09093.x

Muscato G., Prestifilippo M., Abbate N., Rizzuto I., 2005. A prototype of an orange picking robot: past history, the new robot and experimental results. Ind Robot 32, 128-138. http://dx.doi.org/10.1108/01439910510582255

Naghdy F., Esmaili M., 1996. Soft fruit grading using a robotics gripper. Int J Robot Automat 11, 93-101.

Peleg M., Calzada J., 1976. Stress relaxation of deformed fruits and vegetables. J Food Sci 41, 1325-1329. http://dx.doi.org/10.1111/j.1365-2621.1976.tb01163.x

Penisi O.H., Ceccarelli M., Carbone G., 2003. Clasificación de mecanismos en pinzas industriales de dos dedos. Revista Iberoamericana de Ingeniería Mecánica 7, 59-75 [In Spanish].

Peterson C., Hall C., 1975. Dynamic mechanical properties of the Russet Burbank potato as related to temperature and bruise susceptibility. Am J Potato Res 52, 289-312. http://dx.doi.org/10.1007/BF02874443

Petterson A., Ohlsson T., Gray J., Davis S., Caldwell D., Dodd T., 2010a. A Bernoulli principle gripper for handling of planar and 3D (food) products. Ind Robot 37, 518-526. http://dx.doi.org/10.1108/01439911011081669

Pettersson A., Davis S., Gray J., Dodd T., Ohlsson T., 2010b. Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes. J Food Eng 98, 332-338. http://dx.doi.org/10.1016/j.jfoodeng.2009.11.020

Ruiz-Altisent M., Ruiz-García L., Moreda G., Lu R., Hernandez-Sanchez N., Correa E., Diezma B., Nicolaī B., García-Ramos J., 2010. Sensors for product characterization and quality of specialty crops-A review. Comput Electron Agric 74, 176-194. http://dx.doi.org/10.1016/j.compag.2010.07.002

Saadat M., Nan P., 2002. Industrial applications of automatic manipulation of flexible materials. Ind Robot 29,434-442. http://dx.doi.org/10.1108/01439910210440255

Sam R., Nefti S., 2010. Design and feasibility tests of flexible gripper for handling variable shape of food products. Proc 9th WSEAS Intl Conf on Signal Processing, Robotics and Automation, Cambridge, UK, pp. 329-335.

Sarig Y., 1993. Robotics of fruit harvesting: A state-of-theart review. J Agr Eng Res 54, 265-280. http://dx.doi.org/10.1006/jaer.1993.1020

Sdahl M., Kuhlenkoetter B., 2006. CAGD-computer aided gripper design for a flexible gripping system. Intl J Adv Robot Syst 2(2), 135-138.

Seliger G., Stephan J., 1998. Flexible garment handling with adaptive control strategies. Proc 29th Intl Symp Robot, Birmingham, Alabama, USA, pp. 483-487.

Seliger G., Stephan J., Lange S., 2000. Non-rigid part handling by new gripping device. Proc 8th Intl Conf Manuf Eng, ICME2000, Sydney, Australia. pp. 423-427.

Setiawan A.I., Furukawa T., Preston A., 2004. A low-cost gripper for an apple picking robot. Robotics and Automation. Proc ICRA, New Orleans, Lousiana, USA, pp. 4448-4453.

Sharma M., Mohsenin N., 1970. Mechanics of deformation of a fruit subjected to hydrostatic pressure. J Agr Eng Res 15, 65-74. http://dx.doi.org/10.1016/0021-8634(70)90111-3

Stone R., Brett P., 2002. A flexible pneumatic actuator for gripping soft irregular shaped objects. Innovative actuators for mechatronic systems, IEE Colloquium Flexible Pneumatic Actuator for Gripping 170, 13/1-13/3.

Studman C., 2001. Computers and electronics in postharvest technology-a review. Comput Electron Agr 30, 109-124. http://dx.doi.org/10.1016/S0168-1699(00)00160-5

Van Henten E., Van Tuijl B., Hemming J., Kornet J., Bontsema J., Van Os E., 2003. Field test of an autonomous cucumber picking robot. Biosyst Eng 86, 305-313. http://dx.doi.org/10.1016/j.biosystemseng.2003.08.002

Van Henten E., Van't Slot D., Hol C., Van Willigenburg L., 2009. Optimal manipulator design for a cucumber harvesting robot. Comput Electron Agric 65, 247-257. http://dx.doi.org/10.1016/j.compag.2008.11.004

Van Zeebroeck M., 2005. The discrete element method (DEM) to simulate fruit impact damage during transport and handling. Doctoral thesis. Katholieke Universiteit, Leuven.

Van Zeebroeck M., 2007. The effect of fruit factors on the bruise susceptibility of apples. Postharvest Biol Technol 46, 10-19. http://dx.doi.org/10.1016/j.postharvbio.2007.03.017

Wallin P.J., 1997. Robotics in the food industry: An update. Trends Food Sci Technol 8, 193-198. http://dx.doi.org/10.1016/S0924-2244(97)01042-X

Wilson M., 2010. Developments in robot applications for food manufacturing. Ind Robot 37, 498-502. http://dx.doi.org/10.1108/01439911011081632

Wurdemann H., Aminzadeh V., Dai J., Reed J., Purnell G., 2011. Category-based food ordering processes. Trends Food Sci Technol 22, 14-20. http://dx.doi.org/10.1016/j.tifs.2010.10.003

Zhong Z., Yeong C., 2006. Development of a gripper using SMA wire. Sensors and Actuators A: Physical 126, 375-381. http://dx.doi.org/10.1016/j.sna.2005.10.017

Zhu T., Liu R., Wang X., Wang K., 2006. Principle and application of vibrating suction method. Intl Conf Robotics and Biomimetics, Kunming, China. pp. 491-495. PMid:16865248

How to Cite
Blanes, C., Mellado, M., Ortiz, C., & Valera, A. (1). Review. Technologies for robot grippers in pick and place operations for fresh fruits and vegetables. Spanish Journal of Agricultural Research, 9(4), 1130-1141. https://doi.org/10.5424/sjar/20110904-501-10
Section
Agricultural engineering