Progress in the Spanish National Barley Breeding Program

  • M. P. Gracia Estacion Experimental de Aula Dei-CSIC (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza
  • E. Mansour Estacion Experimental de Aula Dei-CSIC (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza
  • A. M. Casas Estacion Experimental de Aula Dei-CSIC (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza
  • J. M. Lasa Estacion Experimental de Aula Dei-CSIC (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza
  • B. Medina Estacion Experimental de Aula Dei-CSIC (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza
  • J. L. Molina-Cano Centro Universitat de Lleida-Institut de Recerca i Tecnología Agroalimentàries (UdL-IRTA), Rovira Roure 191, 25198 Lleida
  • M. A. Moralejo Centro Universitat de Lleida-Institut de Recerca i Tecnología Agroalimentàries (UdL-IRTA), Rovira Roure 191, 25198 Lleida
  • A. López Centro Universitat de Lleida-Institut de Recerca i Tecnología Agroalimentàries (UdL-IRTA), Rovira Roure 191, 25198 Lleida
  • P. López-Fuster Instituto Tecnico Agronomico Provincial de Albacete (ITAP), Apdo. de correos 451, 02080 Albacete
  • J. Escribano Instituto Tecnico Agronomico Provincial de Albacete (ITAP), Apdo. de correos 451, 02080 Albacete
  • F. J. Ciudad Instituto Tecnologico Agrario de Castilla y Leon (ITACyL), Ctra Burgos km. 119, Valladolid 47071
  • P. Codesal Instituto Tecnologico Agrario de Castilla y Leon (ITACyL), Ctra Burgos km. 119, Valladolid 47071
  • J. L. Montoya Instituto Tecnologico Agrario de Castilla y Leon (ITACyL), Ctra Burgos km. 119, Valladolid 47071
  • E. Igartua Estacion Experimental de Aula Dei-CSIC (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza
Keywords: genotype-by-environment interaction, Hordeum vulgare, pedigree selection

Abstract

The Spanish Barley Breeding Program is carried out by four public research organizations, located at the most representative barley growing regions of Spain. The aim of this study is to evaluate the program retrospectively, attending to: i) the progress achieved in grain yield, and ii) the extent and impact of genotype-by-environment interaction of grain yield. Grain yields and flowering dates of 349 advanced lines in generations F8, F9 and F10, plus checks, tested at 163 trials over 11 years were analized. The locations are in the provinces of Albacete, Lleida, Valladolid and Zaragoza. The data are highly unbalanced because the lines stayed at the program for a maximum of three years. Progress was estimated using relative grain yield and mixed models (REML) to homogenize the results among years and locations. There was evident progress in the program over the period studied, with increasing relative yields in each generation, and with advanced lines surpassing the checks in the last two generations, although the rate of progress was uneven across locations. The genetic gain was greater from F8 to F9 than from F9 to F10. The largest non-purely environmental component of variance was genotype-by-location-by-year, meaning that the genotype-by-location pattern was highly unpredictable. The relationship between yield and flowering time overall was weak in the locations under study at this advanced stage of the program. The program can be continued with the same structure, although measures should be taken to explore the causes of slower progress at certain locations.

Downloads

Download data is not yet available.

Author Biographies

M. P. Gracia, Estacion Experimental de Aula Dei-CSIC (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza

Department of Genetics and Plant Production

 

A. M. Casas, Estacion Experimental de Aula Dei-CSIC (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza

Department of Genetics and Plant Production

 

J. M. Lasa, Estacion Experimental de Aula Dei-CSIC (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza

Department of Genetics and Plant Production

E. Igartua, Estacion Experimental de Aula Dei-CSIC (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza
Department of Genetics and Plant Production

References

Baik B, Ullrich SE, 2008. Barley for food: characteristics, improvement, and renewed interest. J Cereal Sci 48: 233-242.
http://dx.doi.org/10.1016/j.jcs.2008.02.002

Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, Bergelson J, Cuguen J, Roux F, 2010. Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet 6: e1000940.
http://dx.doi.org/10.1371/journal.pgen.1000940
PMid:20463887 PMCid:2865524

Ceccarelli S, 1994. Specific adaptation and breeding for marginal conditions. Euphytica 77: 205-219.
http://dx.doi.org/10.1007/BF02262633

Ceccarelli S, Grando S, Impiglia A, 1998. Choice of selection strategy in breeding barley for stress environments. Euphytica 103: 307318.
http://dx.doi.org/10.1023/A:1018647001429

Cuesta-Marcos A, Casas AM, Hayes PM, Gracia MP, Lasa JM, Ciudad F, Codesal P, Molina-Cano JL, Igartua E, 2009. Yield QTL affected by heading date in Mediterranean grown barley. Plant Breeding 128: 46-53.
http://dx.doi.org/10.1111/j.1439-0523.2008.01510.x

Cullis B, Smith A, Hunt C, Gilmour A, 2000. An examination of the efficiency of the Australian crop variety evaluation programmes. J Agric Sci 135: 213-222.
http://dx.doi.org/10.1017/S0021859699008163

FAOSTAT, 2011. Available in http://faostat.fao.org [17 May 2011].

Guttier MJ, Stork JC, Brien KO, Souza E, 2001. Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Sci 41: 327-335.
http://dx.doi.org/10.2135/cropsci2001.412327x

Khalil IH, Farooqi A, Rahman H, Subhan F, 2004. Selection differential and genetic gain for grain yield in wheat. Sarhad J Agric 20: 517-522.

Khalil IH, Khalil SK, Ahmad B, Rahman S, Subhan F, 2010. Genetic gains for grain yield in two selection phases of a wheat breeding program. Pak J Bot 42: 1595-1600.

Lasa JM, 2008. Spanish Barley Core Collection. INIA Monographs No. 25, Madrid, 222 pp.

Laurie DA, 2009. Developmental and reproductive traits in the Triticeae. In: Genetics and genomics of the Triticeae, Series Plant genetics and genomics: crops and models (Feuillet C, Muehlbauer G, eds), Vol 7, pp: 591-609.

Lawn RJ, Summerfield RJ, Ellis RH, Qi A, Roberts EH, Chay PM, Brouwer JB, Rose JL, Yeates SJ, 1995. Towards the reliable prediction of time to flowering in six annual crops. VI. Applications in crop improvement. Exp Agric 31: 89-108.
http://dx.doi.org/10.1017/S0014479700025047

Payne RW, Murray DA, Harding SA, Baird DB, Soutar DM, 2009. GenStat for Windows (12th edition) Introduction. VSN Int, Hemel Hempstead, UK.

Poehlman JM, 1985. Adaptation and distribution. In: Barley, agronomy monograph No. 26. (Rasmusson DC, ed). ASA-CSSA-SSSA, Madison, WI, USA, pp: 1-17.

Roozeboom KL, Schapaugh WT, Tuinstra MR, Vanderlip RL, Millikeng A, 2008. Testing wheat in variable environments: genotype environment, interaction effects, and grouping test locations. Crop Sci 48: 317-330.
http://dx.doi.org/10.2135/cropsci2007.04.0209

St Martin SK, McBlain BA, 1991. Procedure to estimate genetic gain by stages in multi-stage testing programs. Crop Sci 31: 1367-1369.
http://dx.doi.org/10.2135/cropsci1991.0011183X003100050058x

Thomason WE, Phillips SB, 2006. Methods to evaluate heat cultivar testing environments and improve cultivar election protocols. Field Crops Res 99: 87-95.
http://dx.doi.org/10.1016/j.fcr.2006.03.007

Turner NC, 2004. Sustainable production of crops and pastures under drought in a Mediterranean environment. Ann Appl Biol 144: 139-147.
http://dx.doi.org/10.1111/j.1744-7348.2004.tb00327.x

Published
2012-06-11
How to Cite
Gracia, M. P., Mansour, E., Casas, A. M., Lasa, J. M., Medina, B., Molina-Cano, J. L., Moralejo, M. A., López, A., López-Fuster, P., Escribano, J., Ciudad, F. J., Codesal, P., Montoya, J. L., & Igartua, E. (2012). Progress in the Spanish National Barley Breeding Program. Spanish Journal of Agricultural Research, 10(3), 741-751. https://doi.org/10.5424/sjar/2012103-2613
Section
Plant breeding, genetics and genetic resources