Water-use efficiency of irrigated biomass sorghum in a Mediterranean environment

  • P. Garofalo Consiglio per la Ricerca e la Sperimentazione in Agricoltura. Centro di Ricerca per la Cerealicoltura, S.S. 673 km 25.200, 71122 Foggia
  • M. Rinaldi Consiglio per la Ricerca e la Sperimentazione in Agricoltura. Centro di Ricerca per la Cerealicoltura, S.S. 673 km 25.200, 71122 Foggia
Keywords: Sorghum bicolor, irrigation water use efficiency, green area index, biomass yield, water stress index, actual transpiration

Abstract

A large interest is currently addressed to the no-food crops as an alternative source of energy. One of these crops is the biomass sorghum (Sorghum bicolor L. Moench) thanks to its high biomass productivity and high use efficiency of solar radiation and water. Aim of the research is assess the biomass sorghum response to the water in the Mediterranean environment. Biomass sorghum was subjected to four irrigation regimes, at 50, 75, 100 and 125% of ETc for three years (2008, 2009 and 2010). Water use efficiency (WUE), irrigation water use efficiency (IWUE) and water stress index (WSI) were calculated. Plant dry matter and green area index resulted different among the three years and the differences among irrigation treatments were more evident in 2009. The different soil water content at sowing among the three experimental years, affected the growth path during the growing crop cycle, explaining differences in term of biomass accumulation, leaf expansion and water consumption. WUE was higher in 2009 than in 2008 and 2010 with no differences among irrigation treatments for the first and third experimental year. WU ranged between 891 and 566 mm, the aboveground dry matter biomass between 4097 and 1825 g m-2 and WUE between 8.49 and 4.00 kg m-3. IWUE, similarly to WUE, was higher in the second year than in the first and third year, but with differences among irrigation treatments in the 2008 and 2010. WUE calculated from WU normalized with VPD gave a more stable parameter in the three years. This research showed the suitability of biomass sorghum as energy crop in Mediterranean environment and its ability to use water efficiently.

Downloads

Download data is not yet available.

References

Allen RG, Pereira LS, Raes D, Smith M, 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. Irrig Drain Paper No. 56, FAO, Rome, 301 pp.

Amaducci S, Amaducci MT, Benati R, Venturi G, 2000. Crop yield and quality parameters of four annual fibre crops (hemp, kenaf, maize and sorghum) in the North of Italy. Ind Crop Prod 11: 179-186. http://dx.doi.org/10.1016/S0926-6690(99)00063-1

Asseng S, Hsiao C, 2000. Canopy CO2 assimilation, energy balance, and water use efficiency of an alfalfa crop before and after cutting. Field Crops Res 67: 191-206. http://dx.doi.org/10.1016/S0378-4290(00)00094-0

Baldy C, 1986. Comportement des blés dans les climats méditerranéens. Mediterranean Ecology XII (3-4): 73-88.

Beale CV, Long SP, 1997. The effects of nitrogen and irrigation on the productivity of the C4 grasses Miscanthus × giganteus and Spartina cynosuroides. Aspect Appl Biol 49: 225-230.

Beale CV, Morison JIL, Long SP, 1999. Water use efficiency of C4 perennial grasses in a temperate climate. Agr Forest Meteorol 96: 103-115. http://dx.doi.org/10.1016/S0168-1923(99)00042-8

Berenguer MJ, Faci JM, 2001. Sorghum (Sorghum bicolor L. Moench) yield compensation processes under different plant densities and variable water supply. Eur J Agron 15: 43-55. http://dx.doi.org/10.1016/S1161-0301(01)00095-8

Bunce JA, 1985. Effect of boundary layer conductance on the response of stomata to humidity. Plant Cell Environ 8: 55-58. http://dx.doi.org/10.1111/j.1365-3040.1985.tb01209.x

Bunce JA, 1988. Nonstomatal inhibition of photosynthesis by water stress. Reduction in photosynthesis at high transpiration rate without stomatal closure in field-grown tomato. Photosynth Res 18: 357-362. http://dx.doi.org/10.1007/BF00034840

Cosentino S, Copani V, Patanè C, Mantineo M, D'Agosta G, 2008. Agronomic, energetic and environmental aspects of biomass energy crops suitable for Italian environments. Ital J Agron 2: 81-95.

Curt MD, Fernandez J, Martinez M, 1995. Productivity and water use efficacy of sweet sorghum (Sorghum bicolor (L.) Moench) cv. "Keller" in relation to water regime. Biomass Bioenerg 8: 401-409. http://dx.doi.org/10.1016/0961-9534(95)00036-4

De Wit CT, 1958. Transpiration and crop yields. Versk. Landbouwk. Onderz. 64.6 Inst Biol Chem Res Field Crops Herbage, Wageningen, The Netherlands.

Dercas N, Liakatas A, 1999. Sorghum water loss in relation to irrigation in relation to irrigation treatment. Water Resour Manage 13: 39–57. http://dx.doi.org/10.1023/A:1008026119228

Dercas N, Liakatas A, 2007. Water and radiation effect on sweet sorghum productivity. Water Resour Manage 21: 1585-1600. http://dx.doi.org/10.1007/s11269-006-9115-2

FAO-UNESCO, 1963. Bioclimatic map of the Mediterranean Zone, explanatory notes. Paris, France.

Farah SM, Salih AA, Taha AM, Ali ZI, Ali IA, 1997. Grain sorghum response to supplementary irrigations under post-rainy season condition. Agr Water Manage 33: 31–41. http://dx.doi.org/10.1016/S0378-3774(96)01283-8

Farrè I, Faci JM, 2006. Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agr Water Manage 83: 135-143. http://dx.doi.org/10.1016/j.agwat.2005.11.001

Fernandez J, Curt MD, 1996. Nutrient extraction by the harvestable biomass on Cynara cardunculus L. Proc 9th European Bioenergy Conference, Biomass for Energy and the Environment. Oxford: Pergamon, pp: 467-472. PMid:9172812

Garofalo P, Vonella AV, Ruggieri S, Rinaldi M, 2011. Water and radiation use efficiencies of irrigated biomass sorghum in a Mediterranean environment. Ital J Agron 6: 133-139.

Guedira M, Shroyer JP, Kirkham MB, Paulsen GM, 1997. Wheat coleoptile and root growth and seedling survival after dehydration and rehydration. Agron J 89: 822-826. http://dx.doi.org/10.2134/agronj1997.00021962008900050017x

Habyarimana E, Laureti D, De Ninno M, Lorenzoni C, 2004. Performances of biomass sorghum [Sorghum bicolor (L.) Moench] under different water regimes in Mediterranean region. Ind Crop Prod 20: 23-28. http://dx.doi.org/10.1016/j.indcrop.2003.12.019

Hanks RJ, 1974. Model for predicting as influenced by water use. Agron J 66: 660-665. http://dx.doi.org/10.2134/agronj1974.00021962006600050017x

Hess TM, Stephens W, Crout NMJ, Young SD, Bradley RG, 1997. PARCH-user guide. Sutton Bonnington, University of Nottingham, UK.

Hsiao TC, 1993. Growth and productivity of crops in relation to water status. Acta Hortic 335: 137-148.

Hsiao TC, Bradford KJ, 1983. Physiological consequences of cellular water deficits: An overview. In: Limitations to efficient water use in crop production (Taylor H, Jordan W, Sinclair T, eds.). Am Soc Agron, Madison, WI, USA, pp: 227-265.

Idso SB, Jackson RO, Pinter PJ, Aeginato AJ, Hatfield JL, 1981. Normalizing the stress degree-day parameter for environmental variability. Agr Meteorol 24: 45-55. http://dx.doi.org/10.1016/0002-1571(81)90032-7

Lang ARG, 1986. Leaf area and average leaf angle from transmittance of direct sunlight. Aust J Bot 34: 349-355. http://dx.doi.org/10.1071/BT9860349

Lang, ARG, 1987. Simplified estimate of leaf area index from transmittance of the sun's beam. Agr Forest Meteorol 41: 179-186. http://dx.doi.org/10.1016/0168-1923(87)90078-5

Lewis RB, Hiler EA, Jordan WR, 1974. Susceptibility of grain sorghum to water deficit at three growth stages. Agron J 66: 589-591. http://dx.doi.org/10.2134/agronj1974.00021962006600040032x

Lindroth A, Verwijst T, Halldin S, 1994. Water-use efficiency of willow: variation with season, humidity and biomass allocation. J Hydrology 156: 1-19. http://dx.doi.org/10.1016/0022-1694(94)90068-X

Mailhol JC, Olufayo AA, Ruelle P, 1997. Sorghum and sunflower evapotranspiration and yield from simulated leaf area index. Agr Water Manage 35: 167-182. http://dx.doi.org/10.1016/S0378-3774(97)00029-2

Mastrorilli M, Katerji N, Rana G, Steduto P, 1995. Sweet sorghum in Mediterranean climate: radiation use and biomass water use efficiencies. Ind Crop Prod 3: 253-260. http://dx.doi.org/10.1016/0926-6690(94)00002-G

Mastrorilli M, Katerji N, Rana G, 1999. Productivity and water use efficiency of sweet sorghum as affected by soil water deficit occurring at different vegetative growth stages. Eur J Agron 11(3-4): 207-215. http://dx.doi.org/10.1016/S1161-0301(99)00032-5

Monteith JL, 1993. The exchange of water and carbon by crops in a Mediterranean climate. Irrig Sci 14: 85-91. http://dx.doi.org/10.1007/BF00208401

Monti A, Venturi G, Amaducci MT, 2002. Confronto fra sorgo, kenaf e miscanto a diversi livelli di disponibilità idrica e azotata per la produzione di energia. Rivista di Agronomia 36: 213-220. [In Italian].

Murray FW, 1967. On the computation of saturation vapour pressure. J Appl Meteorol 6: 203-204. 2.0.CO;2" target="_blank">http://dx.doi.org/10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2

Nilson T, 1971. A theoretical analysis of the frequency of gaps in plant stands. Agr Meteorol 8: 25-38. http://dx.doi.org/10.1016/0002-1571(71)90092-6

Norman JM, 1979. Modelling the complete crop canopy. In: Modification of the aerial environment of crops (Barfield BJ, Gerber JF, eds). ASAE, St. Joseph, MI, USA. pp: 249-277.

Omer MA, Saxton KE, Bassett DL, 1988. Optimum sorghum planting dates in western Sudan by simulated water budgets. Agr Water Manage 13: 33-48. http://dx.doi.org/10.1016/0378-3774(88)90131-X

Passioura JB, 1977. Grain yield, harvest index, and water use of wheat. J Aust Inst Agr Sci 43: 117-120.

Paw UKT, Gao W, 1988. Applications of solutions to non-linear energy budget equations. Agr Forest Meteorol 43: 121-145. http://dx.doi.org/10.1016/0168-1923(88)90087-1

Rinaldi M, Garofalo P, 2011. Radiation-use efficiency of irrigated biomass sorghum in a Mediterranean environment. Crop Pasture Sci 62: 830-839. http://dx.doi.org/10.1071/CP11091

Ritchie JT, 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resour Res 8: 1204-1212. http://dx.doi.org/10.1029/WR008i005p01204

Rosenthal WD, Arkin GF, Shouse PJ, Jordan WR, 1987. Water deficit effects on transpiration and leaf growth. Agron J 79: 1019-1026. http://dx.doi.org/10.2134/agronj1987.00021962007900060014x

Saeed IAM, El-Nadi AH, 1998. Forage sorghum yield and water efficiency under variable irrigation. Irrig Sci 18: 67-71. http://dx.doi.org/10.1007/s002710050046

Sahnoune M, Adda A, Soualem S, Harch M, Merah O, 2004. Early water-deficit effects on seminal roots morphology in barley. Comptes Rendus Biologie 327: 389-398. http://dx.doi.org/10.1016/j.crvi.2004.01.004 PMid:15212371

Sharma PN, 1985. Final report of consultancy. Submitted to the Inter-American Institute of Cooperation on Agriculture (IICA). Brasilia, Brazil.

Sharma PN, Alfonso Neto F, 1986. Water production function of sorghum for northeast Brazil. Agr Water Manage 11: 169-180. http://dx.doi.org/10.1016/0378-3774(86)90029-6

Stanhill G, 1986. Water use efficiency. Adv Agron 39: 53-85. http://dx.doi.org/10.1016/S0065-2113(08)60465-4

Steduto P, Albrizio R, 2005. Resource use efficiency of field-grown sunflower, sorghum, wheat and chickpea. II. Water use efficiency and comparison with radiation use efficiency. Agr Forest Meteorol 130: 269-281. http://dx.doi.org/10.1016/j.agrformet.2005.04.003

Steduto P, Hsiao TC, Fereres E, 2007. On the conservative behaviour of biomass water productivity. Irrig Sci 25: 189-207. http://dx.doi.org/10.1007/s00271-007-0064-1

Steduto P, HsiaoTC, D Raes, Fereres E, 2009. AquaCrop-The FAO crop model for predicting yield response to water: I. Concepts and underlying principles. Agron J 101: 426-437. http://dx.doi.org/10.2134/agronj2008.0139s

Stöckle CO, Donatelli M, Nelson R, 2003. CropSyst, a cropping systems simulation model. Eur J Agron 18: 289-307. http://dx.doi.org/10.1016/S1161-0301(02)00109-0

Tanner CB, Sinclair TR, 1983. Efficient water use in crop production: research or re-search. In: Limitations to efficient water use in crop production (Taylor HM et al., eds.). ASA, Madison, WI, USA. pp: 1-27. PMid:6821714

Tolk JA, Howell TA, 2003. Water use efficiency of grain sorghum grown in three USA southern Great Plains soils. Agr Water Manage 59: 97-111. http://dx.doi.org/10.1016/S0378-3774(02)00157-9

Turner NC, 1974. Stomatal behaviour and water status of maize, sorghum, and tobacco under field conditions. II. At low soil water potential. Plant Physiol 55: 360-365. http://dx.doi.org/10.1104/pp.53.3.360

USDA, 2010. Soil Survey Staff 'Keys to Soil Taxonomy', 11th edn, USDA-Natural Resources Conservation Service, Washington DC. Available in ftp://ftpfc.sc.egov.usda.gov/NSSC/Soil_Taxonomy/keys/2010_Keys_to_Soil_Taxonomy.pdf. [Last access, November 2011].

Vannella S, 1998. Comparison of growth and accumulation functions. Ital J Agron 2(2): 79–90.

Volkmar KM, 1997. Water stress nodal roots of wheat: effects on leaf growth. Aust J Plant Physiol 24: 49-56. http://dx.doi.org/10.1071/PP96063

Published
2013-09-11
How to Cite
Garofalo, P., & Rinaldi, M. (2013). Water-use efficiency of irrigated biomass sorghum in a Mediterranean environment. Spanish Journal of Agricultural Research, 11(4), 1153-1169. https://doi.org/10.5424/sjar/2013114-4147
Section
Water management