Short Communication. Effect of phosphorus nutrition and grain position within maize cob on grain phosphorus accumulation

  • Muhamamad Nadeem INRA, UMR 1391 ISPA, F-33140 Villenave d'Ornon, France Bordeaux Sciences Agro, UMR 1391 ISPA, F-33170 Gradignan, France COMSATS Institute of Information Technology, Vehari Pakistan
  • Alain Mollier INRA, UMR 1391 ISPA, F-33140 Villenave d'Ornon. Bordeaux Sciences Agro, UMR 1391 ISPA, F-33170 Gradignan.
  • Alain Vives INRA, UMR 1391 ISPA, F-33140 Villenave d'Ornon. Bordeaux Sciences Agro, UMR 1391 ISPA, F-33170 Gradignan.
  • Loic Prud´Homme INRA, UMR 1391 ISPA, F-33140 Villenave d'Ornon. Bordeaux Sciences Agro, UMR 1391 ISPA, F-33170 Gradignan.
  • Sylvie Niollet INRA, UMR 1391 ISPA, F-33140 Villenave d'Ornon. Bordeaux Sciences Agro, UMR 1391 ISPA, F-33170 Gradignan.
  • Sylvain Pellerin INRA, UMR 1391 ISPA, F-33140 Villenave d'Ornon. Bordeaux Sciences Agro, UMR 1391 ISPA, F-33170 Gradignan.
Keywords: grain P, grain position, P contents, P application

Abstract

Nutritional status of grains may vary due to external nutrient supply and their position within parent maize cob. Phosphorus (P) is the least mobile nutrient in the soil and therefore newly growing seedlings are largely dependent on the stored grain P contents which are accumulated during the crop maturity period. Objective of this study was to access the effects of different P applications and grain positions on P and dry matter contents in grains. Phosphorus application and grain position has significant (p<0.05) effects on P contents in grains whereas dry weight and P content are highly correlated. Grain weight and P contents decreased linearly from base to apical position possibly due to flow of nutrients from base towards apical position within cob. Significantly higher grain dry weight (0.35±0.01 g) and P contents (962±57 µg P) are recorded in high P application (92.50 kg ha-1) rate on base position whereas minimum grain dry weight (0.14±0.01 g) and P contents (219±11 µg P) were recorded on apical grain position in low P application (5.60 kg ha-1) rate. The results suggest that for better seedling P nutrition especially in soils of low inherent P, maize grains should be selected from base or middle position where maximum dry weight and P contents are concentrated to support the seedlings to reach at growth at which roots are capable of external P uptake.

Downloads

Download data is not yet available.

References

Barry DAJ, Miller MH, 1989. Phosphorus nutritional-requirement of maize seedlings for maximum yield. Agron J 81: 95-99. http://dx.doi.org/10.2134/agronj1989.00021962008100010017x

Barry DAJ, Miller MH, Bates TE, 1989. Ear leaf and seedling-P concentration and dris indexes as indicators of P-nutrition for maize. Commun Soil Sci Plant Anal 20: 1397-1412. http://dx.doi.org/10.1080/00103628909368157

Baraloto C, Forget PM, Goldberg DE, 2005. Seed mass, seedling size and neotropical tree seedling establishment. J Ecol 93:1156-1166. http://dx.doi.org/10.1111/j.1365-2745.2005.01041.x

Bathellier C, Badeck F, Couzi P, Harscoët S, Mauve C, Ghashghaie J, 2007. Divergence in δ 13C of dark respired CO2 and bulk organic matter occurs during the transition between heterotrophy and autotrophy in Phaseolus vulgaris plants. New Phytol 177: 406-418.

Bedi S, Mehta S, Sharma S, Vashist KK, 2009. Nitrogen nutrition and efficiency of seed reserve mobilization during germination in winter maize cv. 'Buland'. J New Seeds 10: 57-61. http://dx.doi.org/10.1080/15228860802716184

Bewley JD, 1997. Seed germination and dormancy. Plant Cell 9: 1055-1066. http://dx.doi.org/10.1105/tpc.9.7.1055

De Marco DG, 1990. Effect of seed weight, and seed phosphorus and nitrogen concentrations on the early growth of wheat seedlings. Aust J Exp Agric 30: 545-549. http://dx.doi.org/10.1071/EA9900545

Deleens E, Gregory N, Bourdu R, 1984. Transition between seed reserve use and photosynthetic supply during development of maize seedlings. Plant Sci Lett 37: 35-39. http://dx.doi.org/10.1016/0304-4211(84)90199-8

Calderini DF, Ortiz-Monasterio I, 2003. Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop Sci 43: 141-151. http://dx.doi.org/10.2135/cropsci2003.0141

Ellison AM, 1987. Effect of seed dimorphism on the density dependent dynamics of experimental population of Antiplex trianularis (Chenopodiaceae). Amer J Bot 74: 1280-1288. http://dx.doi.org/10.2307/2444163

Glass ADM, Beaton JD, Bomke A, 1980. Role of P in plant nutrition. Proc Western Canada Phosphate Symposium. pp: 357-368.

Grant CA, Flaten DN, Tomasiewicz DJ, Sheppard SC, 2001. The importance of early season phosphorus nutrition. Can J Plant Sci 81: 211-224. http://dx.doi.org/10.4141/P00-093

Guardiola JL, Sutcliffe JF, 1971. Mobilization of phosphorus in the cotyledons of young seedlings of the garden pea (Pisum sativum L.). Ann Bot 35: 809-823.

Hanley ME, Cordier PK, May O, Kelly CK, 2007. Seed size and seedling growth: differential response of Australian and British Fabaceae to nutrient limitation. New Phytol 174: 381-388. http://dx.doi.org/10.1111/j.1469-8137.2007.02003.x

Hara Y, Toriyama K, 1998. Seed nitrogen accelerates the rates of germination, emergence, and establishment of rice plants. Soil Sci Plant Nutr 44(3): 359-366. http://dx.doi.org/10.1080/00380768.1998.10414457

He LS, Burris JS, 1992. Respiration and carbohydrate-metabolism during germination of sh2 and Sh2 sweet corn seed. Hortscience 27: 1306-1308.

Horvatic M, Balint L, 1996. Relationship among the phytic acid and protein content during maize grain maturation. J Agron Crop Sci 176: 73-77. http://dx.doi.org/10.1111/j.1439-037X.1996.tb00448.x

Howe HF, Schupp EW, 1985. Early consequence of seed dispersal for a neotrophical tree (Viola surinamensis). Ecol 66: 781-791. http://dx.doi.org/10.2307/1940539

Lawrence DM, Halmer P, Bowles DJ, 1990. Mobilisation of storage reserves during germination and early seedling growth of sugar beet. Physiol Plant 78: 421-429. http://dx.doi.org/10.1111/j.1399-3054.1990.tb09058.x

Le Deunff Y, 1975. La régulation hormonale de la germination: le cas des céréales. In: La germination de semences (Chaussat R & Le Deunff Y, eds). Gauthier Villars, Paris. pp: 81-93.

Leonova S, Grimberg A, Marttila S, Stymne S, Carlsson AS, 2010. Mobilization of lipid reserves during germination of oat (Avena sativa L.), a cereal rich in endosperm oil. J Exp Bot 61: 3089-3099. http://dx.doi.org/10.1093/jxb/erq141

Lockhart HB, Hurt HD, 1986: Nutrition of oats. Am Assoc of Cereal Chemists, St. Paul, MN, USA. pp: 297-308.

Lott JNA, Greenwood JS, Batten GD, 1995. Mechanisms and regulation of mineral nutrient storage during seed development. Marcel Dekker, NY. pp: 215-235.

Miller GA, Youngs VL, Oplinger ES, 1980. Effect of available soil-phosphorus and environment on the phytic acid concentration in oats. Cereal Chem 57: 192-194.

Modi AT, Asanzi NM, 2008. Seed performance of maize in response to phosphorus application and growth temperature is related to phytate-phosphorus occurrence. Crop Sci 48: 286-297. http://dx.doi.org/10.2135/cropsci2007.06.0367

Nadeem M, Mollier A, Morel C, Vives A, Prud'homme L, Pellerin S, 2011: Relative contribution of seed phosphorus reserves and exogenous phosphorus uptake to maize (Zea mays L.) nutrition during early growth stages. Plant Soil 346: 231-244. http://dx.doi.org/10.1007/s11104-011-0814-y

Nadeem M, Mollier A, Morel C, Vives A, Prud'homme L, Pellerin S, 2012a. Maize (Zea mays L.) endogenous seed phosphorus remobilization is not influenced by exogenous phosphorus during germination and early growth stages. Plant Soil 357: 13-24. http://dx.doi.org/10.1007/s11104-011-1111-5

Nadeem M, Mollier A, Morel C, Vives A, Prud'homme L, Pellerin S, 2012b. Seed phosphorus remobilization is not a major limiting step for phosphorus nutrition during early growth of maize. J Plant Nutr Soil Sci 175: 805-809. http://dx.doi.org/10.1002/jpln.201200369

Ozanne PG, 1980. Phosphate nutrition of plants - A general treatise. ASA, Madison, WI, USA. pp: 559-589.

Park SH, Sung JK, Lee SY, Park JH, Lee JY, Jang BC, Lee BH, Kim TW, 2006. Early growth, carbohydrate, and phytic acid contents of germinating rice seeds under NaCl stress. Korean J Crop Sci 51: 137-141.

Pommel B, Goytino B, Bonhomme R, 1995. Effects of seed size, seed position on the parent cob and parental cob size on the leaf area of maize under field conditions. Eur J Agron 4: 363-369.

R Development Core Team, 2009. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available in http://www.r-project.org/. [Accessed 4 Feb 2012].

Raboy V, 1990. Biochemistry and genetics of phytic acid synthesis. In: Inositol metabolism in plants (Morré DJ, Boss WF & Loewus FA, eds). Wiley Liss Inc, NY. pp: 55-76.

Raboy V, Below FE, Dickinson DB, 1989. Alteration of maize kernel phytic acid levels by recurrent selection for protein and oil. J Hered 80: 311-315.

Raboy V, Young KA, Dorsch JA, Cook A, 2001. Genetics and breeding of seed phosphorus and phytic acid. J Plant Physiol 158: 489-497. http://dx.doi.org/10.1078/0176-1617-00361

Ravindran V, Ravindran G, Sivalogan S, 1994. Total and phytate phosphorus contents of various foods and feedstuffs of plant origin. Food Chem 56: 335-343.

Rengel Z, Zhang F, 2011. Phosphorus sustains life. Plant Soil 349: 1-2. http://dx.doi.org/10.1007/s11104-011-1043-0

Ros C, Bell RW, White PF, 1997. Effect of seed phosphorus and soil phosphorus applications on early growth of rice (Oryza sativa L.) cv IR66. Soil Sci Plant Nutr 43: 499-509. http://dx.doi.org/10.1080/00380768.1997.10414777

Schachtman DP, Reid RJ, Ayling SM, 1998. Phosphorus uptake by plants: From soil to cell. Plant Physiol 116: 447-453. http://dx.doi.org/10.1104/pp.116.2.447

Seshu DV, Krishnaswamy V, Siddique SB, 1988. Seed vigour in rice. In: Rice seed health. International Rice Research Institute, Manila. pp: 315–329.

Six J, 2011. Plant nutrition for sustainable development and global health. Plant Soil 339: 1-2. http://dx.doi.org/10.1007/s11104-010-0677-7

Thomson CJ, Bolger TP, 1993. Effects of seed phosphorus concentration on the emergence and growth of subterranean clover (Trifolium subterraneum L.). Plant Soil 156: 285-288. http://dx.doi.org/10.1007/BF00025038

Usuda H, Shimogawara K, 1993. Phosphate deficiency in maize. III. Changes in amounts of sucrose-phosphate synthase during phosphate deprivation. Plant Physiol 102: 176-176.

Van Veldhoven PP, Mannaerts GP, 1987. Inorganic and organic phosphate measurements in the nanomolar range. Anal Biochem 161: 45-48. http://dx.doi.org/10.1016/0003-2697(87)90649-X

White PJ, Veneklaas EJ, 2012. Nature and nurture: the importance of seed phosphorus content. Plant Soil 357: 1-8. http://dx.doi.org/10.1007/s11104-012-1128-4

Zhang Y, Zhang Y, Liu N, Su D, Xue Q, Stewart BA, Wang Z, 2012. Effect of source-sink manipulation on accumulation of micronutrients and protein in wheat grains. J Plant Nutr Soil Sci 175: 622-629. http://dx.doi.org/10.1002/jpln.201100224

Published
2014-04-29
How to Cite
Nadeem, M., Mollier, A., Vives, A., Prud´HommeL., Niollet, S., & Pellerin, S. (2014). Short Communication. Effect of phosphorus nutrition and grain position within maize cob on grain phosphorus accumulation. Spanish Journal of Agricultural Research, 12(2), 486-491. https://doi.org/10.5424/sjar/2014122-4650
Section
Plant physiology