Macro- and micro-aggregate stability of soils determined by a combination of wet-sieving and laser-ray diffraction
Abstract
Soil structural stability affects the profitability and sustainability of agricultural systems. Different-sized structural units have different stability mechanisms and respond differently to such external factors as rain, wind, irrigation and management. A comprehensive analysis of the soils structural stability requires its characterization at the macroand micro-aggregate scales. We determined the aggregate stability of 36 soils at the macro-aggregate scale using wetsieving methods and of 20 soils at the micro-aggregate scale using laser-ray diffraction techniques. All the tests gave consistent estimates of aggregate stability. Most soils were homogeneous and quite stable at the macro-aggregate level as determined by the "water stable aggregate" parameter, but differed significantly among them and were quite unstable at the micro-aggregate level as determined by the "mean weight diameter of micro-aggregates" parameter. Slaking induced by the fast wetting of aggregates was the main destabilizing mechanism in these soils (88% of the soils had slaking stability index values < 0.5), whereas most soils were quite tolerant to the mechanical shaking of aggregates (89% of the soils had stirring stability index values > 0.5). The combination of the macro- and micro-aggregate stability tests is a consistent way for describing the structural stability of the studied soils.Downloads
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.