The short term influence of aboveground biomass cover crops on C sequestration and β–glucosidase in a vineyard ground under semiarid conditions

  • Fernando Peregrina Instituto de las Ciencias de la Vid y el Vino (ICVV). Gobierno de La Rioja, Universidad de La Rioja y CSIC. Servicio de Investigación y Desarrollo Tecnológico Agroalimentario (CIDA). Ctra. Logroño-Mendavia NA-134 Km. 87,8. 26071 Logroño
  • Eva P. Pérez-Álvarez Instituto de las Ciencias de la Vid y el Vino-ICVV. Gobierno de La Rioja, Universidad de La Rioja y CSIC. Servicio de Investigación y Desarrollo Tecnológico Agroalimentario (CIDA). Ctra. Logroño-Mendavia NA-134 Km. 87,8. 26071 Logroño
  • Enrique García-Escudero Instituto de las Ciencias de la Vid y el Vino-ICVV. Gobierno de La Rioja, Universidad de La Rioja y CSIC. Servicio de Investigación y Desarrollo Tecnológico Agroalimentario (CIDA). Ctra. Logroño-Mendavia NA-134 Km. 87,8. 26071 Logroño
Keywords: conservation agriculture, soil enzymatic activity, soil quality, vineyard soil management

Abstract

Tillage and semiarid Mediterranean climatic conditions accelerate soil organic matter losses in Spanish vineyards. Previous studies showed that cover crops can increase soil organic carbon (SOC) in Mediterranean vineyards. The objectives of this study were to evaluate the influence of two different cover crops in the short term on soil C sequestration in a semiarid vineyard and to study the potential use of both β–glucosidase enzimatic activity (GLU) and the GLU/SOC ratio in order to assess the SOC increase. The experiment was carried out in a cv. Tempranillo (Vitis vinifera L.) vineyard on a Oxyaquic Xerorthent soil in Rioja winegrowing region (NE, Spain). The experimental design was established in 2009 with three treatments: conventional tillage; sown barley cover crop (Hordeum vulgare, L.); sown Persian clover cover crop (Trifolium resupinatum L.). Carbon in the aboveground biomass with each cover crop was monitored. Soil was sampled in June 2011 and June 2012, and SOC, GLU and the GLU/SOC ratio were determined. After 3 years both cover crops increased SOC at soil surface with C sequestration rates of 0.47 and 1.19 t C ha-1 yr-1 for BV and CV respectively. GLU and GLU/SOC ratio increased in both cover crops at 0-5 cm soil depth. The C sequestration rates and GLU were related to the cover crops aboveground biomass. In consequence, in semiarid vineyards under cover crops GLU could be an appropriate indicator to asses the increase of SOC and the soil quality improvement in the short-term (2-3 years).

Downloads

Download data is not yet available.

Author Biographies

Fernando Peregrina, Instituto de las Ciencias de la Vid y el Vino (ICVV). Gobierno de La Rioja, Universidad de La Rioja y CSIC. Servicio de Investigación y Desarrollo Tecnológico Agroalimentario (CIDA). Ctra. Logroño-Mendavia NA-134 Km. 87,8. 26071 Logroño

 

Eva P. Pérez-Álvarez, Instituto de las Ciencias de la Vid y el Vino-ICVV. Gobierno de La Rioja, Universidad de La Rioja y CSIC. Servicio de Investigación y Desarrollo Tecnológico Agroalimentario (CIDA). Ctra. Logroño-Mendavia NA-134 Km. 87,8. 26071 Logroño

 

References

Celette F, Findeling A, Gary C, 2009. Competition for nitrogen in an unfertilized intercropping system: The case of an association of grapevine and grass cover in a Mediterranean climate. Eur J Agron 30: 41-51. http://dx.doi.org/10.1016/j.eja.2008.07.003

Eivazi F, Tabatabai MA, 1988. Glucosidase and galactosidases in soils. Soil Biol Biochem 20: 601-605. http://dx.doi.org/10.1016/0038-0717(88)90141-1

Franzluebbers AJ, 2005. Soil organic carbon sequestration and agricultural greenhouse gas emissions in the southeastern USA. Soil Till Res 83: 120-147. http://dx.doi.org/10.1016/j.still.2005.02.012

Franzluebbers AJ, Stuedemann JA, Wilkinson, SR, 2001. Bermudagrass management in the Southern Piedmont USA: I. Soil and surface residue carbon and sulphur. Soil Sci Am J 65: 834-841. http://dx.doi.org/10.2136/sssaj2001.653834x

Grandy AS, Robertson, GP, 2007. Land-use intensity effects on soil organic carbon accumulation rates and mechanism. Ecosyst 10: 58-73. http://dx.doi.org/10.1007/s10021-006-9010-y

Grossman RB, Reinsch TG, 2002. Bulk density and linear extensibility. In: Methods of soil analysis. Part 4. Physical methods (Dale JH, Topp GC, eds.). SSSA, Madison, WI, (USA), pp: 208-228.

Hernánz JL, Sanchez-Girón V, Navarrete L, 2009. Soil carbon sequestration and stratification in a cereal/leguminous crop rotation with three tillage systems in semiarid conditions. Agr Ecosyst Environ 133: 114-122. http://dx.doi.org/10.1016/j.agee.2009.05.009

Knight TR, Dick RP, 2004. Differentiating microbial and stabilized β-glucosidase activity relative to soil quality. Soil Biol Biochem 36: 2089-2096. http://dx.doi.org/10.1016/j.soilbio.2004.06.007

Lal R, 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123: 1-22. http://dx.doi.org/10.1016/j.geoderma.2004.01.032

Mariscal-Sancho I, Santano J, Mendiola MA, Peregrina F, Espejo R, 2010. Carbon dioxide emission rates and β-glucosidase activity in Mediterranean Ultisols under different soil management. Soil Sci 175: 453-460. http://dx.doi.org/10.1097/SS.0b013e3181f51704

Moreno B, García-Rodríguez S, Ca-izares R, Castro J, Benítez E, 2009. Rainfed olive farming in south-eastern Spain: Long-term effect of soil management on biological indicators of soil quality. Agr Ecosyst Environ 131: 333-339. http://dx.doi.org/10.1016/j.agee.2009.02.011

Nannipieri P, Kandeler E, Ruggiero P, 2002. Enzyme activities and microbiological and biochemical processes in soil. In: Enzymes in the environment, activity, ecology, and application (Burns RG, Dick RP, eds.). Dekker Marcel, NY (USA), pp: 1-33. http://dx.doi.org/10.1201/9780203904039.ch1

Nelson DW, Sommers LE, 1982. Total carbon, organic carbon, and organic matter. In: Methods of soil analysis. Part 2. (Page AL, et al., eds.) ASA and SSSA, Madison, WI (USA), pp: 539-594.

Novara A, Gristina L, Saladino SS, Santoro A, Cerdà A, 2011. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil Till Res 117: 140-147. http://dx.doi.org/10.1016/j.still.2011.09.007

Paz-Ferreiro J, Trasar-Cepeda C, Leirós MC, Seoane S, Gil-Sotres F, 2009. Biochemical properties in managed grassland soils in a temperate humid zone: modifications of soil quality as a consequence of intensive grassland use. Biol Fertil Soils 45: 711-722. http://dx.doi.org/10.1007/s00374-009-0382-y

Peregrina F, López D, Zaballa O, Villar MT, González G, García-Escudero E, 2010a. Soil quality of vineyards in the Origin Denomination Rioja: Index of overcrusting risk (FAO-PNUMA), content of organic carbon and relation with soil fertility. Revista Ciências Agrárias 33: 338-345.

Peregrina F, Larrieta C, Ibá-ez S, García-Escudero E, 2010b. Labile organic matter, aggregates, and stratification ratios in a semiarid vineyard with cover crops. Soil Sci Soc Am J 74: 2120-2130. http://dx.doi.org/10.2136/sssaj2010.0081

Peregrina F, Larrieta C, Colina M, Ibá-ez S, García-Escudero E, 2010c. Soil carbon sequestration rates in a semiarid vineyard with permanent cover crop after 5 years of the establishment. Proc Eur Cong on Conservation Agriculture, Towards Agro-Environmental Climatic and Energetic Sustainability (Ministerio de Medio Ambiente y Medio Rural y Marino, ed.), Madrid, Espa-a, pp: 641-646.

Peregrina F, Pérez-Álvarez EP, Colina M, García-Escudero E, 2012. Cover crops and tillage influence soil organic matter and nitrogen availability in a semi-arid vineyard. Arch Agron Soil Sci 58: S95-S102. http://dx.doi.org/10.1080/03650340.2011.648182

Peregrina F, Pérez-Álvarez EP, García-Escudero E, 2014. Soil microbiological properties and its stratification ratios for soil quality assessment under different cover crop management systems in a semiarid vineyard. J Plant Nutr Soil Sci 177: 548-559. http://dx.doi.org/10.1002/jpln.201300371

Pérez-Álvarez EP, Pérez-Sotés JL, García-Escudero E, Peregrina F, 2013. Cover crop short-term effects on soil NO3−-N availability, nitrogen nutritional status, yield, and must quality in a calcareous vineyard of the AOC Rioja, Spain. Commun Soil Sci Plant Anal 44: 711-721. http://dx.doi.org/10.1080/00103624.2013.748122

Ramos ME, Robles AB, Sánchez-Navarro A, González-Rebollar JL, 2011. Soil responses to different management practices in rainfed orchards in semiarid environments. Soil Till Res 112: 85-91. http://dx.doi.org/10.1016/j.still.2010.11.007

Reeves DW, 1997. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Till Res 43: 131-167. http://dx.doi.org/10.1016/S0167-1987(97)00038-X

Reicosky DC, Kemper WD, Langdale GW, Douglas CW Jr., Rasmussen PE, 1995. Soil organic matter changes resulting from tillage and biomass production. J Soil Water Conserv 50: 253-261.

Schloter M, Dilly O, Munch JC, 2003. Indicators for evaluating soil quality. Agr Ecosyst Environ 98: 255-262. http://dx.doi.org/10.1016/S0167-8809(03)00085-9

Smith R, Bettiga L, Cahn M, Baumgartner K, Jackson LE, Bensen T, 2008. Vineyard floor management affects soil, plant nutrition, and grape yield and quality. Calif Agric 62: 184-190. http://dx.doi.org/10.3733/ca.v062n04p184

Soil Survey Staff, 2006. Keys to soil taxonomy, 10th ed. USDA-Natural Resources Conservation Service, Washington, DC, USA.

Statgraphics Plus for Windows, 1998. Standard edition user manual, vers. 4. Manugistics, Rockville, MD, USA.

Steenwerth K, Belina, KM, 2008. Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem. Appl Soil Ecol 40: 359-369. http://dx.doi.org/10.1016/j.apsoil.2008.06.006

Stott DE, Andrews SS, Liebig MA, Wienhold BJ, Karlen DL, 2010. Evaluation of β-glucosidase activity as a soil quality indicator for the soil management assessment framework. Soil Sci Soc Am J 74: 107-119. http://dx.doi.org/10.2136/sssaj2009.0029

Tabatabai MA, 1994. Soil enzymes. In: Methods of soil analysis. Part 2: Microbiological and biochemical properties (Weaver RW, Angel JS, Bottomley PS, eds.). Soil Sci Soc Amer, Madison, WI (USA), pp: 775–833.

UNESCO, 1979. Map of the world distribution of arid regions. Map at scale 1:25,000,000 with explanatory note. UNESCO, Paris, France 54 pp.

Virto I, Imaz MJ, Fernández-Ugalde O, Urrutia I, Enrique A, Bescansa P, 2012. Soil quality evaluation following the implementation of permanent cover crops in semi-arid vineyards. Organic matter, physical and biological soil properties. Span J Agric Res 10: 1121-1132. http://dx.doi.org/10.5424/sjar/2012104-613-11

Woods LE, 1989. Active organic matter distribution in the surface 15 cm of undisturbed and cultivated soil. Biol Fertil Soils 8: 271-278. http://dx.doi.org/10.1007/BF00266490

Published
2014-10-02
How to Cite
Peregrina, F., Pérez-Álvarez, E. P., & García-Escudero, E. (2014). The short term influence of aboveground biomass cover crops on C sequestration and β–glucosidase in a vineyard ground under semiarid conditions. Spanish Journal of Agricultural Research, 12(4), 1000-1007. https://doi.org/10.5424/sjar/2014124-5818
Section
Agricultural environment and ecology