Genetic relationships between interspecific lines derived from Oryza glaberrima and Oryza sativa crosses using microsatellites and agro-morphological markers

  • Yonnelle D. Moukoumbi Africa Rice Center (AfricaRice), Sahel Regional Station. BP 96 Saint Louis
  • Olufisayo Kolade AfricaRice, 01 BP 2031 Cotonou
  • Khady N. Drame AfricaRice, Regional Station. Mikocheni B/Kawe. Avocado Street. P.O. Box 33581 Dar-Es-Salaam
  • Moussa Sie AfricaRice, 01 BP 2031 Cotonou
  • Marie Noelle Ndjiondjop AfricaRice, 01 BP 2031 Cotonou
Keywords: agro-morphological and SSR markers, introgression, lowland NERICA, rice

Abstract

New Rice(s) for Africa (NERICA) are high yielding rice varieties mostly cultivated in Sub-Saharan Africa and developed by the Africa Rice Center. This study is aimed at investigating the proportion of introgression of parental genomic contribution of 60 lowland NERICA varieties and establishment of molecular profiling. Agro-morphological data from 17 characteristics was recorded and significant (p<0.05) to high significant (p<0.0001) differences were obtained with leaf length and width, plant height at maturity, days to heading, maturity, primary and secondary branching of panicles, and grain width and grain thickness. A total of 114 microsatellite polymorphic markers covering 2183.13 cM of the rice genome showed the proportions of alleles introgressed from the donor parent (Oryza glaberrima) into 52 lowland NERICA lines (TOG5681 and IR64) as follows: 11% for BC2, 6.07% for BC3, and 7.55% for BC4. The introgression proportions for the eight remaining lowland NERICA lines derived from other crosses ranged from 5.5 to 11.3%. The proportion recorded with the recurrent parent was 83.99%. The highest introgression proportions of the O. glaberrima allele for all 60 lowland NERICA lines were found on chromosomes 2, 6 and 12 (TOG5681/IR64) and on chromosome 3 with NERIC-L-29 (TOG5681/IR1529-680-3-2). Multivariate analyses performed using an association of agro-morphological and molecular data revealed two major groups according to the distribution of the lowland NERICAs including the lowland NERICAs released were found in cluster 1 of the dendrogram. Genetic and genomic studies, QTL identification and analysis using agro-morphologically significant traits revealed should be used to develop mega-varieties adapted in rice growth conditions in Sub-Saharan Africa.

Downloads

Download data is not yet available.

References

References

Agnoun Y, Sie M, Djedatin G, Drame KN, Toulou B, Ogunbayo SA, Sanni KA, Tia D, Ahanchede A, Vodouhe RS, Ndjiondjop MN, 2012. Molecular profiling of interspecific lowland rice progenies resulting from crosses between TOG5681 and TOG5674 (Oryza glaberrima) and IR64 (Oryza sativa). Int J Biol 4: 3-7. http://dx.doi.org/10.5539/ijb.v4n3p19

Albar L, Ndjiondjop MN, Esshak Z, Berger A, Pinel A, Jones M, Fargette D, Ghesquiere A, 2003. Fine genetic mapping of a gene required for Rice yellow mottle virus cell-to-cell movement. Theor Appl Genet 107: 371–378. http://dx.doi.org/10.1007/s00122-003-1258-4

Albar L, Bangratz-Reyser M, Hebrard E, Ndjiondjop MN, Jones M, Ghesquiere A, 2006. Mutations in the eIF(iso) 4G translation initiation factor confer high resistance of rice to Rice yellow mottle virus. Plant J 47: 417–426. http://dx.doi.org/10.1111/j.1365-313X.2006.02792.x

Barry MB, Pham JL, Noyer JL, Billot C, Courtois B, Ahmadi N, 2007. Genetic diversity of the two cultivated rice species (O. sativa and O. glaberrima) in Maritime Guinea: Evidence for interspecific recombination. Euphytica 154: 127–137. http://dx.doi.org/10.1007/s10681-006-9278-1

Bernardo R, Romero-Severson J, Ziegle J, Hauser J, Joe L, Hookstra G, Doerge RW, 2000. Parental contribution and coefficient of coancestry among maize inbreds: pedigree, RFLP, and SSR data. Theor Appl Genet 100: 552-556.

Bioversity International/IRRI/AfricaRice, 2007. Descriptors for wild and cultivated rice (Oryza spp.), pp: 21-43. Available in http://www.bioversityinternational.org/uploads/tx_news/Rice_232_01.pdf.

Cisse F, Yalcouye N, Doumbia Y, Hamadoun A, 2006. Development of interspecific populations O. sativa L. and O. glaberrima Steud and identification of strains resistant to drought conditions in lowland rice cultivation and controlled flooding. Proc Beyond the first generation NERICA in Africa: paradigms and partnerships for the next decade. AfricaRice, Dar es Salaam. pp: 23-24.

Demol J, Baudoin JP, Louant BP, Maréchal R, Mergeai G, Otoul E, 2002. Amélioration des plantes. Application aux principales espèces cultivées en régions tropicales [Plant breeding: application to the main species grown in tropical regions]. Presses Agronomiques, Gembloux, Belgique. 581 pp.

Futakuchi K, Sie M, 2009. Better exploitation of African rice (Oryza glaberrima) in varietal development for resource–poor farmers in West and Central Africa. Agricultural Journal 4: 96–102.

Glaszmann JC, 1987. Isozymes and classification of Asian rice varieties. Theor Appl Genet 74: 21-30. http://dx.doi.org/10.1007/BF00290078

Heckenberger M, Bohn M, Frisch M, Maurer HP, Melchinger AE, 2005. Identification of essentially derived varieties with molecular markers: an approach based on statistical test theory and computer simulations. Theor Appl Genet 111: 598-560. http://dx.doi.org/10.1007/s00122-005-2052-2

Hospital F, 2005. Selection in backcross programmes. Philos T R Soc B 360: 1503-1511. http://dx.doi.org/10.1098/rstb.2005.1670

Jacquot M, Arnaud M, 1979. Classification numérique de variétés de riz. Agro Trop 34: 157–173.

Jones MP, Dingkuhn M, Aluko GK, Semon M, 1997. Interspecific Oryza sativa L. × O. glaberrima Steud. progenies in upland rice improvement. Euphytica 92: 237-246. http://dx.doi.org/10.1023/A:1002969932224

Moukoumbi YD, Sie M, Vodouhe R, Ogunbayo SA, N'dri B, Toulou B, Ahanchede A, 2011. Assessing phenotypic diversity of interspecific rice varieties using agro-morphological characterization. J Plant Breed Crop Sci 3: 74-86.

Ndjiondjop MN, Semagn K, Sie M, Cissoko M, Fatondji B, Jones M, 2008. Molecular profiling of interspecific lowland rice populations derived from IR64 (Oryza sativa) and Tog5681 (Oryza glaberrima). Afr J Biotechnol 7: 4219-4229.

Orjuela J, Garavito A, Bouniol M, Arbelaez JD, Moreno L, 2010. A universal core genetic map for rice. Theor Appl Genet 120: 563-572. http://dx.doi.org/10.1007/s00122-009-1176-1

Peleman JD, Van der Voort JR, 2003. Breeding by design. Trends Plant Sci 8: 330-334. http://dx.doi.org/10.1016/S1360-1385(03)00134-1

Risterucci AM, Grivet L, N'Goran JAK, Pieretti I, Flament MH, Lanaud C, 2000. A high-density linkage map of Theobroma cacao L. Theor Appl Genet 101: 948-955. http://dx.doi.org/10.1007/s001220051566

Semagn K, Ndjiondjop MN, Cissoko M, 2006. Microsatellites and agronomic traits for assessing genetic relationships among 18 New Rice for Africa (NERICA) varieties. Afr J Biotechnol 5: 800-810.

Sie M, 1991. Prospection and genetic evaluation of rice traditional varieties (Oryza sativa L et O. glaberrima Steud) from Burkina Faso. PhD Thesis. Faculty of Sciences and Technics of National University of Ivoiry Coast, Abidjan. 118 pp.

Van Berloo R, 2008. GGT 2.0: Versatile software for visualization and analysis of genetic data. J Hered 99: 232–236. http://dx.doi.org/10.1093/jhered/esm109

Ward JH, 1963. Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58: 236-244. http://dx.doi.org/10.1080/01621459.1963.10500845

XLSTAT, 2011. XLSTAT Statistical Software for Excel. Available in www.xlstat.com.en.

Zeng YX, Hu CY, Lu YG, Li JQ, Liu XD, 2009. Abnormalities occurring during female gametophyte development result in the diversity of abnormal embryo sacs and leads to abnormal fertilization in indica/japonica hybrids in rice. J Integr Plant Biol 51 (1): 3-12. http://dx.doi.org/10.1111/j.1744-7909.2008.00733.x

Published
2015-05-29
How to Cite
Moukoumbi, Y. D., Kolade, O., Drame, K. N., Sie, M., & Ndjiondjop, M. N. (2015). Genetic relationships between interspecific lines derived from Oryza glaberrima and Oryza sativa crosses using microsatellites and agro-morphological markers. Spanish Journal of Agricultural Research, 13(2), e0701. https://doi.org/10.5424/sjar/2015132-6330
Section
Plant breeding, genetics and genetic resources