Antifungal potential of Bacillus vallismortis R2 against different phytopathogenic fungi

  • Preet K. Kaur Guru Nanak Dev University, Dept. Microbiology, Amritsar-143005
  • Jaspal Kaur Punjab Agricultural University, Dept. Plant Pathology, Ludhiana-144001
  • Harvinder S. Saini Guru Nanak Dev University, Dept. Microbiology, Amritsar-143005
Keywords: rhizosphere, microscopy, black point disease, Alternaria alternata, bio-autography, biomolecules

Abstract

The cash crops grown in an agro-climatic region are prone to infection by various fungal pathogens. The use of chemical fungicides over the years has resulted in emergence of resistant fungal strains, thereby necessitating the development of effective and environmental friendly alternatives. The natural antagonistic interactions among different microbial populations have been exploited as an eco-friendly approach for controlling fungal pathogens resistant to synthetic chemicals. Morphologically distinct bacterial cultures (150), isolated from rhizospheric soils of wheat, rice, onion and tomato plants were screened for their antifungal potential against seven phytopathogenic fungi prevalent in the State of Punjab (India). The bacterial isolate R2, identified as Bacillus vallismortis, supported more than 50% inhibition of different phytopathogenic fungi (Alternaria alternata, Rhizoctonia oryzae, Fusarium oxysporum, Fusarium moniliforme, Colletotrichum sp, Helminthosporium sp and Magnaporthe grisea) in dual culture plate assay. The thin layer chromatography based bio-autography of acid-precipitated biomolecules (APB) indicated the presence of more than one type of antifungal molecule, as evidenced from zones of inhibition against the respective fungal pathogen. The initial analytical studies indicated the presence of surfactin, iturin A and fengycin-like compounds in APB. The antifungal activity of whole cells and APB of isolate R2 was evaluated by light and scanning electron microscopy. The wheat grains treated with APB and exposed to spores of A. alternata showed resistance to the development of black point disease, thereby indicating the potential application of R2 and its biomolecules at field scale level.

Downloads

Download data is not yet available.

References

References

Cakmakcl R, Erat M, Erdagan U, Figen-Donmez M, 2007. The influence of plant-growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J Plant Nutr Soil Sci 170: 288-295. http://dx.doi.org/10.1002/jpln.200625105

Cappuccino GJ, Sherman N, 1999. Microbiology: A laboratory manual, 4th ed. Addison Wesley Publ Co, CA, USA.

Dexter JE, Matsuo RR, 1982. Effect of smudge and blackpoint, mildewed kernels and ergot on durum wheat quality. Cereal Chem 59: 63-69.

El-Ghaouth A, 1997. A biologically-based alternatives to synthetic fungicides for the control of postharvest diseases. J Ind Microbiol Biotechnol 19: 160-162. http://dx.doi.org/10.1038/sj.jim.2900428

Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GA, 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74: 2461-2470. http://dx.doi.org/10.1128/AEM.02272-07

Grover M, Nain L, Singh SB, Saxena AK, 2010. Molecular and biochemical approaches for characterization of antifungal trait of a potent biocontrol agent Bacillus subtilis RP24. Curr Microbiol 60: 99-106. http://dx.doi.org/10.1007/s00284-009-9508-6

Hiltner L, 1904. Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb DLG 98: 59-78.

Hu LB, Shi ZQ, Zhang T, Yang ZM, 2007. Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC38932. FEMS Microbiol Lett 272: 91-98. http://dx.doi.org/10.1111/j.1574-6968.2007.00743.x

Kaur R, Macleod J, Foley W, Nayudu M, 2006. Gluconic acid: An antifungal agent produced by Pseudomonas species in biological control of take-all. Phytochemistry 67: 595-604. http://dx.doi.org/10.1016/j.phytochem.2005.12.011

Kuang-Ren Chung, 2012. Stress response and pathogenicity of the necrotrophic fungal pathogen Alternaria alternata. Scientifica 2012: 1-17. http://dx.doi.org/10.6064/2012/635431

Li L, Mo M, Qu Q, Luo H, Zhang K, 2007. Compounds inhibitory to nematophagous fungi produced by Bacillus sp. strain H6 isolated from fungistatic soil. Eur J Plant Pathol 117: 329-340. http://dx.doi.org/10.1007/s10658-007-9101-4

Lugtenberg BJJ, Chin-A-Woeng TFC, Bloemberg GV, 2002. Microbe-plant interactions: principles and mechanisms. A Van Leeuw J Microb 81: 373-383.

Magnet-Dana R, Peypoux F, 1994. Iturins, a special class of pore-forming lipopeptides: biological and physiological properties. Toxicology 87: 151-174. http://dx.doi.org/10.1016/0300-483X(94)90159-7

Makovitzki A, Viterbo A, Brotman Y, Chet I, Shai Y, 2007. Inhibition of fungal and bacterial plant pathogens in vitro and in planta with ultrashort cationic lipopeptides. Appl Environ Microbiol 73: 6629-6636. http://dx.doi.org/10.1128/AEM.01334-07

Mew T, 1991. Disease management in rice. In: CRC Handbook of pest management in agriculture, Vol. 3, CRC Press, Boston. pp: 279-299.

Monaco C, Sisterna M, Perello A, Bello GD, 2004. Preliminary studies on biological control of the blackpoint complex of wheat in Argentina. World J Microbiol Biotechnol 20: 285-290. http://dx.doi.org/10.1023/B:WIBI.0000023835.05701.10

Mortel JE, Tran H, Govers F, Raaijmakers JM, 2009. Cellular responses of the late blight pathogen Phytophthora infestans to cyclic lipopeptide surfactants and their dependence on G proteins. Appl Environ Microbiol 75: 4950-4957. http://dx.doi.org/10.1128/AEM.00241-09

Park K, Ryu H, Dutta S, Lee SH, Lee SW, Moon SS, 2014. Identification of 7 different iturin compounds from Bacillus vallismortis inducing systematic resistance against Phytophthora capsici and Pectobacterium carotovorum. XVI Int Cong on Molecular Plant-Microbe Interaction (MPMI), Rhodes, Greece, July 6-10: P144.

Perello A, Moreno M, Sisterna M, 2008. Alternaria infectoria species-group associated with black point of wheat in Argentina. Plant Pathol J 57: 379. http://dx.doi.org/10.1111/j.1365-3059.2007.01713.x

Roberts P, Muchovej R, Achor D, Baker CA, Bruton B, Adkins S, 2005. Investigation into a mature watermelon vine decline and fruit rot. (Abstr.) J Phytopathol 95 (suppl): S89.

Romero D, Vicente A, Olmos JL, Davila JC, Perez-Garcia A, 2007. Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. J Appl Microbiol 103: 969-976. http://dx.doi.org/10.1111/j.1365-2672.2007.03323.x

Singh DP, Goel LB, Kumar J, Sinha VC, Singh RK, Sharma I, Aujla SS, Singh A, Singh KP, Tiwari AN, 2003. Postharvest surveys of wheat grains for the presence of Karnal bunt and black point disease in different agroclimatic zones of India. Indian J Agr Res 37: 264-268.

Singh BK, Millard P, Whiteley AS, Murrell JC, 2004. Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol 12: 386-393. http://dx.doi.org/10.1016/j.tim.2004.06.008

Sisterna M, Sarandon S, 2000. Blackpoint incidence on durum wheat in Argentina: influence of cultivar and location. Acta Agron Hung 48: 395-401. http://dx.doi.org/10.1556/AAgr.48.2000.4.9

Stein T, 2005. Bacillus subtilis antibiotics: structures, synthesis and specific functions. Mol Microbiol 56: 845-857. http://dx.doi.org/10.1111/j.1365-2958.2005.04587.x

Szczech M, Shoda M, 2006. The effect of mode of application of Bacillus subtilis RB14-C on its efficacy as a biocontrol agent against Rhizoctonia solani. J Phytopathol 154: 370-377. http://dx.doi.org/10.1111/j.1439-0434.2006.01107.x

Tendulkar SR, Saikumari YK, Patel V, Raghotama S, Munshi TK, Balram P, Chattoo BB, 2007. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J Appl Microbiol 103: 2331-2339. http://dx.doi.org/10.1111/j.1365-2672.2007.03501.x

Thrane C, Olsson S, Nielsen TH, Sorensen J, 1999. Vital fluorescent stains for detection of stress in Pythium ultimum and Rhizoctonia solani challenged with viscosinamide from Pseudomonas fluorescens DR54. FEMS Microbiol Ecol 30: 11-23. http://dx.doi.org/10.1111/j.1574-6941.1999.tb00631.x

Villacieros M, Power B, Sanchez-Contreras M, Loret J, Oruezabal RI, Martin M, Fernandez-Pinaz F, Bonilla I, Whelan C, Dowling DN, Rivilla R, 2003. Colonization behaviour of Pseudomonas fluorescens and Sinorhizobium meloti in the alfalfa (Medicago sativa) rhizosphere. Plant Soil 251: 47-54. http://dx.doi.org/10.1023/A:1022943708794

Whipps JM, 2001. Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52: 487-511. http://dx.doi.org/10.1093/jexbot/52.suppl_1.487

Yanez-Mendizabal V, Zeriouh H, Vinas I, Torres R, Usall J, Vicente A, Perez-Garcia A, Teixido N, 2012. Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur J Plant Pathol 132: 609-619. http://dx.doi.org/10.1007/s10658-011-9905-0

Zhao Z, Wang Q, Wang K, Brian K, Liu C, Gu Y, 2010. Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Bioresource Technol 101: 292-297. http://dx.doi.org/10.1016/j.biortech.2009.07.071

Published
2015-05-29
How to Cite
Kaur, P. K., Kaur, J., & Saini, H. S. (2015). Antifungal potential of Bacillus vallismortis R2 against different phytopathogenic fungi. Spanish Journal of Agricultural Research, 13(2), e1004. https://doi.org/10.5424/sjar/2015132-6620
Section
Plant protection