Effects of rhizobacteria on the respiration and growth of Cerasus sachalinensis Kom. seedlings

  • Sijun Qin Shenyang Agricultural University, College of Horticulture /Liaoning Province Key Laboratory of Fruit Quality Development and Regulation, Shenyang 110866
  • Wenjie Zhou Shenyang Agricultural University, College of Horticulture /Liaoning Province Key Laboratory of Fruit Quality Development and Regulation, Shenyang 110866
  • Zhixia Li Shenyang Agricultural University, College of Horticulture /Liaoning Province Key Laboratory of Fruit Quality Development and Regulation, Shenyang 110866
  • Deguo Lyu Shenyang Agricultural University, College of Horticulture /Liaoning Province Key Laboratory of Fruit Quality Development and Regulation, Shenyang 110866
Keywords: rhizosphere microorganisms, seed germination, respiratory pathways, key respiratory enzymes, root

Abstract

In this study, we investigated the influence of rhizosphere microorganisms on seed germination and root metabolism in Cerasus sachalinensis Kom. We inoculated C. sachalinensis plants with suspensions of dominant bacterial strains isolated from their rhizosphere. Four bacterial strains each with significant growth-promoting or growth-inhibiting effects were screened from the efficient root-colonizing microorganisms. The number of actinomycetes increased and that of fungi decreased significantly in the seedling rhizospheres after rhizobacteria treatment. The growth-promoting bacteria slightly affected the respiration rates and respiratory pathway enzymes, but significantly improved root viability, root carbohydrate concentration and seedling growth. Bacillus cereus, Staphylococcus sp. and Pseudomonas fluorescens were identified as the growth-promoting rhizobacteria; one strain could not be identified. After inoculation with the growth-inhibiting bacteria, the number of fungal colonies in the seedling rhizospheres increased and root viability and respiration rate as well as starch and sucrose accumulation in the roots significantly decreased. The glycolysis, pentose phosphate and alternative oxidase pathways became the major pathways of respiratory metabolism after inoculation with the growth-inhibiting bacteria. The height, leaf number, growth and dry weight of the seedlings decreased significantly in plants inoculated with the growth-inhibiting bacteria. Inoculation of C. sachalinensis rhizosphere with growth-promoting and growth-inhibiting bacteria affected the soil environmental factors such as microbial group composition, nutrient concentration and seedling biomass.

Downloads

Download data is not yet available.

References

Allison S, Czimczik CI, Treseder KK, 2008. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Global Change Biol 14(5): 1156-1168. http://dx.doi.org/10.1111/j.1365-2486.2008.01549.x

Annapurna K, Kumar A, Kumar LV, Govindasamy V, Bose P, Ramadoss D, 2013. PGPR-induced systemic resistance (ISR) in plant disease management. In: Bacteria in agrobiology: disease management; Maheshwari DK (ed.). pp: 405-425. Springer, Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-33639-3_15

Bagniewska-Zadworna A, 2008. The root microtubule cytoskeleton and cell cycle analysis through desiccation of Brassica napus seedlings. Protoplasma 233(3-4): 177-185. http://dx.doi.org/10.1007/s00709-008-0001-z

Bais HP, Fall R, Vivanco JM, 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134(1): 307-319. http://dx.doi.org/10.1104/pp.103.028712

Bakker PAHM, Berendsen RL, Doornbos RF, Wintermans PCA, Pieterse CMJ, 2013. The rhizosphere revisited: root microbiomics. Front Plant Sci 4. http://dx.doi.org/10.3389/fpls.2013.00165

Ballesteros-Almanza L, Altamirano-Hernandez J, Pe-a-Cabriales JJ, Santoyo G, Sanchez-Ya-ez JM, Valencia-Cantero E, Macias-Rodriguez L, Lopez-Bucio J, Cardenas-Navarro R, Farias-Rodriguez R, 2010. Effect of co-inoculation with mycorrhiza and rhizobia on the nodule trehalose content of different bean genotypes. Open Microbiol J 17(4): 83-92. http://dx.doi.org/10.2174/1874285801004010083

Beuchat LR, Nail BV, Adler BB, Clavero MRS, 1998. Efficacy of spray application of chlorinated water in killing pathogenic bacteria on raw apples, tomatoes, and lettuce. J Food Protect 61(10): 1305-1311.

Blaško R, Högberg P, Bach L H, Högberg MN, 2013. Relations among soil microbial community composition, nitrogen turnover, and tree growth in N-loaded and previously N-loaded boreal spruce forest. Forest Ecol Manage 302: 319-328. http://dx.doi.org/10.1016/j.foreco.2013.02.035

Bouma TJ, Yanai RD, Elkin AD, Hartmond U, Flores-Alva DE, Eissenstat DM, 2001. Estimating aged-dependent costs and benefits of roots with contrasting life span: comparing apples and oranges. New Phytologist 150: 685-695. http://dx.doi.org/10.1046/j.1469-8137.2001.00128.x

Bryla DR, Bouma TJ, Hartmond U, Eissenstat DM, 2001. Influence of temperature and soil drying on respiration of individual roots in citrus: integrating greenhouse observations into a predictive model for the field. Plant Cell Environ 24: 781-790. http://dx.doi.org/10.1046/j.1365-3040.2001.00723.x

Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P, 2013. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64: 807-838. http://dx.doi.org/10.1146/annurev-arplant-050312-120106

Carvalhais LC, Dennis PG, Fan B, Fedoseyenko D, Kierul K, Becker A, Borriss R, 2013. Linking plant nutritional status to plant-microbe interactions. PloS One 8(7): e68555. http://dx.doi.org/10.1371/journal.pone.0068555

Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E, 2010. "In situ" phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177: 323-330. http://dx.doi.org/10.1016/j.jhazmat.2009.12.035

Dutta S, Mishra AK, Dileep Kumar BS, 2008. Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40(2): 452-461. http://dx.doi.org/10.1016/j.soilbio.2007.09.009

Esitken A, Pirlak L, Turan M, Sahin F, 2006. Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hort 110: 324-327. http://dx.doi.org/10.1016/j.scienta.2006.07.023

Felici C, Vettori L, Toffanin A, Nuti M, 2008. Development of a strain-specific genomic marker for monitoring a Bacillus subtilis biocontrol strain in the rhizosphere of tomato. FEMS Microbiol Ecol 65(2): 289-298. http://dx.doi.org/10.1111/j.1574-6941.2008.00489.x

Gholami A, Shahsavani S, Nezarat S, 2009. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int J Biol Life Sci 5(1): 35-40.

Guentzel JL, Lam KL, Callan MA, Emmons SA, Dunham VL, 2008. Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water. Food Microbiol 25(1): 36-41. http://dx.doi.org/10.1016/j.fm.2007.08.003

Hodge JE, 1962. Determination of reducing sugars and carbohydrates. Methods in Carbohydrate Chemistry 1: 380-394.

Huseyin K, Ahmet E, Metin T, Fikrettin S, 2007. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Hort 114: 16-20. http://dx.doi.org/10.1016/j.scienta.2007.04.013

Johnson LF, Curl EA, 1972. Methods for research on ecology of soil borne pathogens. Burgges Publ. Co., Auburn, AL, USA. 247 pp.

Kamal MM, Lindbeck KD, Savocchia S, Ash GJ, 2015. Biological control of sclerotinia stem rot of canola using antagonistic bacteria. Plant Pathol 64(6): 1375-1384. http://dx.doi.org/10.1111/ppa.12369

Karlidag H, Esitken A, Turan M, Sahin F, 2007. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Hort 114(1): 16-20. http://dx.doi.org/10.1016/j.scienta.2007.04.013

Katsuki H, Kawano C, Yoshida T, Kanayuki H, Tanaka S, 1961. The determination of pyruvic acid by 2,4-dinitrophenylhydrazine method. Anal Biochem 2(5): 433-440. http://dx.doi.org/10.1016/0003-2697(61)90047-1

Kohler J, Hernández J A, Caravaca F, Roldán A, 2009. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65(2): 245-252. http://dx.doi.org/10.1016/j.envexpbot.2008.09.008

Kumar K, Amaresan N, Bhagat S, Madhuri K, Srivastava RC, 2011. Isolation and characterization of rhizobacteria associated with coastal agricultural ecosystem of rhizosphere soils of cultivated vegetable crops. World J Microbiol Biotechnol 27(7): 1625–1632. http://dx.doi.org/10.1007/s11274-010-0616-z

Kumar GP, Kishore N, Amalraj ELD, Ahmed SKMH, Rasul A, Desai S, 2012. Evaluation of fluorescent Pseudomonas spp. with single and multiple PGPR traits for plant growth promotion of sorghum in combination with AM fungi. Plant Growth Regul 67(2): 133-140. http://dx.doi.org/10.1007/s10725-012-9670-x

Laguerre G, Mazurier SI, Amarger N, 1992. Plasmid profiles and restriction fragment length polymorphism of Rhizobium leguminosarum bv. viciae in field populations. FEMS Microbiol Lett 101(1): 17-26. http://dx.doi.org/10.1111/j.1574-6941.1992.tb01644.x

Lamed R, Zeikus JG, 1980. Glucose fermentation pathway of Thermonaerobium brockii. J Bacteriol 141(3): 1251-1257.

Lim JH, Ahn CH, Jeong HY, Kim YH, Kim SD, 2011. Genetic monitoring of multi-functional plant growth promoting rhizobacteria Bacillus subtilis AH18 and Bacillus licheniformis K11 by multiplex and real-time polymerase chain reaction in a pepper farming field. J Korean Soc Appl Bi 54(2): 221-228. http://dx.doi.org/10.3839/jksabc.2011.036

Lindström A, Nyström C, 1987. Seasonal variation in root hardiness in container grown Scots pine, Norway spruce, and Lodgepole pine seedlings. Can J For Res 17: 787-793. http://dx.doi.org/10.1139/x87-126

Ling KH, Paetkau V, Marcus F, Lardy HA, 1966. Phosphofructokinase: I. skeletal muscle. Meth Enzymol 9: 425-429. http://dx.doi.org/10.1016/0076-6879(66)09087-6

Lü DG, Yu C, Du GD, Qin SJ, Li FD, Liu GC, 2008. Microbe diversity in the rhizosphere of Cerasus plants. Acta Ecologica Sinica 28(8): 3882-3890. [in Chinese].

Lü DG, Li ZX, Qin SJ, Ma HY, Liu GC, 2011. Bacterial community structure in the Cerasus sachalinensis Kom. rhizosphere based on the polymerase chain reaction - denaturing gradient gel electrophoresis (PCR-DGGE) method. Afr J Biotechnol 10(62): 13430-13438.

MacMillan K, Emrich K, Piepho HP, Mullins CE, Price AH, 2006. Assessing the importance of genotype×environment interaction for root traits in rice using a mapping population II: conventional QTL analysis. Theor Appl Genet 113(5): 953-964. http://dx.doi.org/10.1007/s00122-006-0357-4

Naz I, Bano A, Ul-Hassan T, 2009. Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol 8(21): 5762-5766.

Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH, 2011. The plant growth–promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol Plant-Microbe Interact 24:533-542. http://dx.doi.org/10.1094/MPMI-09-10-0213

Orhan E, Esitken A, Ercisli S, Turan M, Sahin F, 2006. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hort 111: 38-43. http://dx.doi.org/10.1016/j.scienta.2006.09.002

Ouyang GC, 1985. Plant Physiology Lab Manual. Shanghai Sci Technol Press, Shanghai, 196 pp. [in Chinese].

Pandey P, Kang SC, Gupta CP, Maheshwari DK, 2005. Rhizosphere competent Pseudomonas aeruginosa GRC1 produces characteristic siderophore and enhances growth of Indian mustard (Brassica campestris). Curr Microbiol 51: 303-309. http://dx.doi.org/10.1007/s00284-005-0014-1

Pedraza RO, 2008. Recent advances in nitrogen-fixing acetic acid bacteria. Int J Food Microbiol 125: 25-35. http://dx.doi.org/10.1016/j.ijfoodmicro.2007.11.079

Peng J, Hu J, Zheng XQ, Huang JX, Yang LG, Wang LJ, 2007. Study on concentration count of bacterial suspension of Acidovorax avenae subsp. citrulli and inoculating method with detached leaves. J Inner Mongolia Agr Univ 28(1): 109-112. [in Chinese].

Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD, Luna MV, 2007. Plant growth promoting compounds produced by two strains of Azospirillum brasilense, and implications for inoculant formation. Appl Microbiol Biotechnol 75(5): 1143-1150. http://dx.doi.org/10.1007/s00253-007-0909-9

Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH, 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nat Re Microbiol 11(11): 789-799. http://dx.doi.org/10.1038/nrmicro3109

Picard C, Bosco M, 2008. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots. Naturwissenschaften 95(1): 1-16. http://dx.doi.org/10.1007/s00114-007-0286-3

Plaut GWE, 1969. Isocitrate dehydrogenase (DPN-specific) from bovine heart. In: Methods in enzymology, vol XIII. Citric acid cycle; Lowenstein JM (ed). pp: 34-42. Academic Press, NY,

Qin SJ, Lü DG, Li ZX, Ma HY, Liu LZ, Liu GC, 2011. Effects of water stress on respiration and other physiological metabolisms of Cerasus sachalinensis Kom. seedlings. Scientia Agricultura Sinica 44(1): 201-209. [in Chinese]

Qin SJ, Zhou WJ, Lyu DG, Liu LZ, 2014. Effects of soil sterilization and biological agent inoculation on the root respiratory metabolism and plant growth of Cerasus sachalinensis Kom. Sci Hort 170, 189-195. http://dx.doi.org/10.1016/j.scienta.2014.03.019

Ribaudo CM, Krumpholz EM, Cassaán FD, Bottini R, Cantore ML, Curá JA, 2006. Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. J Plant Growth Regul 24: 175-185. http://dx.doi.org/10.1007/s00344-005-0128-5

Rosas SB, Avanzini G, Carlier E, Pasluosta C, Pastor N, Rovera M, 2009. Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca SR1. Soil Biol Biochem 41(9): 1802-1806. http://dx.doi.org/10.1016/j.soilbio.2008.10.009

Ruan WB, Wang JG, Zhang FS, 2003. The effect of continuous cropping factors on soybean seedling growth and nitrogen fixation. Acta Ecologica Sinica 23(1): 22-29. [in Chinese].

Samuelov NS, Lamed R, Lowe S, Zeikus JG, 1991. Influence of CO2-HCO3 levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens. Appl Environ Microbiol 57(10): 3013-3019.

Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B, 2010. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62(1): 21-30. http://dx.doi.org/10.1007/s10725-010-9479-4

Shi RH, Bao SD, Qin HY, 1996. Soil and Agricultural chemistry analysis. Agricultural Press, Beijing.

Sridhar J, Eiteman M, Wiegel JW, 2000. Elucidation of enzymes in fermentation pathways used by Clostridium thermosuccinogenes growing on inulin. Appl Environ Microbiol 66: 246-251. http://dx.doi.org/10.1128/AEM.66.1.246-251.2000

Sturz AV, Christie BR, 2003. Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Till Res 72: 107-123. http://dx.doi.org/10.1016/S0167-1987(03)00082-5

Sudhakar P, Chattopadhyay GN, Gangwar SK, Ghosh JK, 2000. Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J Agric Sci 134: 227-234. http://dx.doi.org/10.1017/S0021859699007376

Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C, 2013. Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4: 1-19. http://dx.doi.org/10.3389/fpls.2013.00356

Wasaki J, Rothe A, Kania A, Neumann G, Römheld V, Shinano T, Osaki M, Kandeler E, 2005. Root exudation, phosphorus acquisition and microbial diversity in the rhizosphere of white lupine as affected by phosphorus supply and atmospheric carbon dioxide concentration. J Environ Qual 34(6): 2157-2167. http://dx.doi.org/10.2134/jeq2004.0423

Watanabe M, Suzuki A, Komori S, Bessho H, 2004. Comparison of endogenous IAA and cytokinins in shoots of columnar and normal type apple trees. J Jpn Soc Hort Sci 73: 19-24. http://dx.doi.org/10.2503/jjshs.73.19

Yaish MW, Antony I, Glick BR, 2015. Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Anton Leeuw 107(6): 1519-1532. http://dx.doi.org/10.1007/s10482-015-0445-z

Yu RC, Pan RC, 1996. Effect of blue light on the respiration of rice (Oryza sativa) seedlings. Chinese J Rice Sci 10(3): 159-162. [in Chinese].

Yu X, Liu X, Zhu TH, Liu GH, Mao C, 2012. Co-inoculation with phosphate-solubilzing and nitrogen-fixing bacteria on solubilization of rock phosphate and their effect on growth promotion and nutrient uptake by walnut. Eur J Soil Biol 50: 112-117. http://dx.doi.org/10.1016/j.ejsobi.2012.01.004

Zak DR, Holmes WE, White DC, Peacock AD, Tilman D, 2003. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84(8): 2042-2050. http://dx.doi.org/10.1890/02-0433

Zhou W, Qin S, Lyu D, Zhang P, 2015. Soil sterilisation and plant growth-promoting rhizobacteria promote root respiration and growth of sweet cherry rootstocks. Arch Agron Soil Sci 61(3): 361-370. http://dx.doi.org/10.1080/03650340.2014.935346

Published
2016-06-01
How to Cite
Qin, S., Zhou, W., Li, Z., & Lyu, D. (2016). Effects of rhizobacteria on the respiration and growth of Cerasus sachalinensis Kom. seedlings. Spanish Journal of Agricultural Research, 14(2), e0803. https://doi.org/10.5424/sjar/2016142-6848
Section
Plant physiology