Plant-conservative agriculture of acid and degraded Raña-grassland enhances diversity of the common soil mites (Oribatida)

  • Juan Jorrín Centro IFAPA Alameda del Obispo, Dept. Producción Ecológica y Recursos Naturales, Laboratorio de Entomología. Avda. Menéndez Pidal s/n, 14004-Córdoba
  • Pedro González-Fernández Centro IFAPA Alameda del Obispo, Dept. Producción Ecológica y Recursos Naturales, Laboratorio de Suelos. Avda. Menéndez Pidal s/n, 14004-Córdoba
Keywords: Acari, agriculture practices, oribatids, soil biodiversity, Ultisols

Abstract

The seminatural prairie of the Raña of Cañamero (Spain) is a degraded and unproductive agrosystem with acid and stony soils, and low coverage of xerophytic grasses. In a project about secondary reconversion of the raña-prairie to a more productive cropland, an experimental field (EF) was established to assess the effect on plot-productivity of the interaction between correction of soil pH (liming) with three cropping systems: a no-tilled and annually fertilized and improved prairies, and a conventionally-tilled forage crop. The EF model of management was designed as plant-conservative, because no herbicide was applied after seeding to preserve the post-emergence of wild herbs and the natural grass diversity of the prairie. Between 2008 and 2012, we analysed the effect of managing factors (initial conventional-tillage, fertilization, liming and cropping) and agricultural predictors (pH, C:N ratio, soil bulk density and herbaceous biomass) on the alpha(α)-diversity of one of the major group of soil animals, the oribatids. In relation to the raña-prairie, all EF-plots improved their soil bulk density (ρs) and herbaceous biomass (t/ha), and enhanced desirable α-diversity values (richness, abundance and community equity). We conclude that the plant-conservative model: i) do not affect statistically the species richness of the prairie; ii) the desirable α-diversity responses are negatively correlated with soil bulk density and positively with herbaceous biomass, and iii) the low input or minimum intervention model, of an initial and conventional till and annual fertilisation, is the threshold and optimal model of agricultural management to improving oribatids diversity of the raña-soil.

Downloads

Download data is not yet available.

Author Biography

Pedro González-Fernández, Centro IFAPA Alameda del Obispo, Dept. Producción Ecológica y Recursos Naturales, Laboratorio de Suelos. Avda. Menéndez Pidal s/n, 14004-Córdoba
Laboratorio de Suelos, Departamento de Producción Ecológica y Recursos Naturales. Now retired

References

André HM, Ducarme X, Lebrun P, 2002. Soil biodiversity: myth, reality or conning? Oikos 96: 3-24. http://dx.doi.org/10.1034/j.1600-0706.2002.11216.x

Arroyo J, Iturrondobeitia JC, Rad C, González-Carcedo S, González-Carcedo S, 2005. Oribatid mite (Acari) community structure in steppic habitats of Burgos Province, Central Northern Spain. J Nat Hist 39: 3453-3470. http://dx.doi.org/10.1080/00222930500240346

Arroyo J, Iturrondobeitia JC, 2006. Differences in the diversity of oribatid mite communities in forests and agrosystems lands. Eur J Soil Biol 42: 259-269. http://dx.doi.org/10.1016/j.ejsobi.2006.01.002

Balogh J, Mahunka S, 1983. Primitive oribatids of the palaeartic region. Elsevier Science BV and Akademiai Kiado Publishers, Amsterdam, 372 pp.

Bardgett RD, Cook R, 1998. Functional aspects of soil animal diversity in agricultural grasslands. Appl Soil Ecol 10: 263-276. http://dx.doi.org/10.1016/S0929-1393(98)00125-5

Baur B, Joshi J, Schmid B, Hänggi A, Hänggi A, Borcard D, Stary J, Pedroli-Christen A, Thommen GH, Luka H, Rusterholz HP et al., 1996. Variation in species richness of plants and diverse groups of invertebrates in three calcareous grasslands of the Swiss Jura Mountains. Rev Suisse Zool 103: 801-833. http://dx.doi.org/10.5962/bhl.part.79977

Beckmann M, 1988. Die Entwicklung der Bodenmesofauna eines Ruderal-Okosystems und ihre Beeinflussung durch Rekultivierung: 1, Oribatiden (Acari: Oribatei). Pedobiol 31: 391-408.

Behan-Pelletier VM, 1999. Oribatid mite biodiversity in agroecosystems: role for bioindication. Agr Ecosyst Environ 74: 411-423. http://dx.doi.org/10.1016/S0167-8809(99)00046-8

Blake GR, Hartge KH, 1986. Bulk density. In: Methods of soil analysis, agronomy monograph 9, 2nd ed; Klute A (ed). pp: 363-375. ASA and SSSA, Madison, WI, USA.

Butcher JW, Snider R, Snider RJ, 1971. Bioecology of edaphic Collembola and Acarina. Annu Rev Entomol 16: 249-288. http://dx.doi.org/10.1146/annurev.en.16.010171.001341

Carter MR, Ball B, 1993. Soil porosity. In: Soil sampling and methods of analyses; Carter MR (ed). pp: 511-588. Can Soc Soil Sci, Lewis Publ., CRC Press, Boca Raton, FL, USA.

Chen Y, Tessier S, Rouffignat J, 1998. Soil bulk density estimation for tillage systems and soil textures. Trans Am Soc Agric Eng 41: 1601-1610. http://dx.doi.org/10.13031/2013.17328

Cole L, Buckland SM, Bardgett RD, 2005. Relating microarthropod community structure and diversity to soil fertility manipulations in temperate grasslands. Soil Biol Biochem 37: 1707-1717. http://dx.doi.org/10.1016/j.soilbio.2005.02.005

Coleman DC, 2001. Soil biota, soil systems and processes. In: Encyclopedia of biodiversity, vol. 5, pp: 305-314. Academic Press. http://dx.doi.org/10.1016/B0-12-226865-2/00245-5

Convention on Biological Diversity, 2010. Strategic Plan for Biodiversity 2011-2020, including Aichi Biodiversity Targets. United Nations Environment Programme. https://www.cbd.int/sp. [25/02/2015].

Corral-Hernández E, Iturrondobeitia JC, 2012. Effects of cattle and industries on oribatid mite communities of grassland soil in the Basque Country (Spain). Int J Acarol 38 (3): 217-229. http://dx.doi.org/10.1080/01647954.2011.632382

Curry JP, Momen FM, 1988. The arthropod fauna of grassland on reclaimed cutaway peat in Central Ireland. Pedobiol 32: 99-109.

De Deyn GB, Raaijmakers CEH, Zoomer R, Berg MP, Berg MP, De Ruiter PC, Verhoef HA, Bezemer TM, Van der Putten WH, 2003. Soil invertebrate fauna enhances grassland succession and diversity. Nature 422: 711-717. http://dx.doi.org/10.1038/nature01548

De Vries FT, Thébault E, Liiri M, Birkhofer K, Birkhofer K, Tsiafouli MA, Bjørnlund L, Jørgensen HB, Brady MV, Christensen S et al., 2013. Soil food web properties explain ecosystem services across European land use systems. Proc Nat Acad Sci USA 110 (35): 14296-14301. http://dx.doi.org/10.1073/pnas.1305198110

Dong-Hui W, Wen-Ying Y, Zhen-Ming Y, 2007. Difference in soil mite community characteristics among different vegetation restoration practices in the moderately degraded pasture of Songnen grassland. Acta Ecol Sin 53(4): 607-615.

Edwards CA, Lofty JR, 1975. The influence of cultivations on soil animal populations. In: Progress in soil zoology; Vanek J (ed). pp: 399-407. Academia Prague. http://dx.doi.org/10.1007/978-94-010-1933-0_44

Espejo-Serrano R, 1978. Estudio del perfil edáfico y caracterización de las superficies tipo raña del sector Cañamero Horcajo de los Montes. Doctoral Thesis, ETS Ingenieros Agronomos, UPM, Madrid, Spain.

FAOSTAT, 2015. FAOSTAT Database. Food and Agriculture Organization of the United Nations, Statistics Division. http://faostat3.fao.org. [25/02/2015].

García Navarro FJ, Amorós Ortiz-Villajos JA, Sánchez-Jiménez CJ, Bravo Martín-Consuegra S, Bravo Martín-Consuegra S, Márquez Cubero E, Jiménez Ballesta R, 2009. Application of sugar foam to red soils in a semiarid mediterranean environment. Environ Earth Sci 58(3): 603-611. http://dx.doi.org/10.1007/s12665-009-0058-9

Gergócs V, Hufnagel L, 2009. Application of oribatid mites as indicators (Review). Appl Ecol Environ Res 7(1): 79-98. http://dx.doi.org/10.15666/aeer/0701_079098

González-Fernández P, Ordóñez-Fernández R, Espejo-Serrano R, Peregrina-Alonso F, 2003. Cambios en el pH del perfil de un suelo ácido cultivado y enmendado con diversos materiales para incrementar su fertilidad. Estud Zona no Saturada Suelo 6: 373-378.

González-Fernández P, Llanos-Triviño I, Jorrín-Novo J, Ordóñez-Fernández R, 2008. Evolution of organic matter and acidity on cropped, limed-cropped and uncropped mediterranean ultisols. Adv GeoEcol 39: 427-434.

Gormsen D, Hedlund K, Wang HF, 2006. Diversity of soil mite communities when managing plant communities on set-aside arable land. Appl Soil Ecol 31: 147-158. http://dx.doi.org/10.1016/j.apsoil.2005.03.001

Hågvar S, 1990. Reactions to soil acidification in microarthropods: is competition a key factor? Biol Fertil Soils 9: 178-181. http://dx.doi.org/10.1007/BF00335804

Hülsmann A, Wolters V, 1998. The effects of different tillage practices on soil mites, with particular reference to Oribatida. Appl Soil Ecol 9: 327-332. http://dx.doi.org/10.1016/S0929-1393(98)00084-5

Ivan O, Vasiliu A, 2009. Oribatid mites (Acari, Oribatida)-Bioindicators of forest soils pollution with heavy metals and fluorine. Ann For Res 52: 11-18.

Kardol P, Newton JS, Bezemer TM, Maraun M, Maraun M, Van der Putten WH, 2009. Contrasting diversity patterns of soil mites and nematodes in secondary succession. Acta Oecologica 35: 603-609. http://dx.doi.org/10.1016/j.actao.2009.05.006

Linden DR, Hendrix PF, Coleman DC, Van Vliet PCJ, Van Vliet PCJ, 1994. Faunal indicators of soil quality. In: Defining soil quality for sustainable environment; Doran JW et al. (eds). pp: 91-106. SSSA Spec Publ, Am Soc Agron, Madison, WI, USA.

Luxton M, 1981. Studies on the oribatid mites of a Danish beech wood soil. IV, Development biology. Pedobiol 21: 312-340.

Maharning AR, Mills AAS, Adl SM, 2009. Soil community changes during secondary succession to naturalized grasslands. Appl Soil Ecol 41: 137-147. http://dx.doi.org/10.1016/j.apsoil.2008.11.003

Manoj-Kumar S, Hazarika BU, Choudhury TR, Verma BC, Verma BC, Bordoloi LJ, 2012. Liming and integrated nutrient management for enhancing maize productivity on acidic soils of Northeast India. Ind J Hill Farming 25(1): 35-37.

Maraun M, Scheu S, 2000. The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23(3): 384-373. http://dx.doi.org/10.1111/j.1600-0587.2000.tb00294.x

Mariscal-Sancho I, Espejo R, Peregrina F, 2009. Potentially toxic effects of phosphogypsum on palexerults in Western Spain. J Soil Sci Soc Am 73(1): 146-153. http://dx.doi.org/10.2136/sssaj2007.0394

Marshall VG, 1977. Effects of manures and fertilizers on soil fauna: a review. Commonwealth Bureau of Soils, Spec Publ 3, CAB, Slough, UK, 79 pp.

Marshall EJP, 1993. Exploiting semi-natural habitats as part of good agricultural practice. In: Scientific basis for codes of good agricultural practice; Jordan VWL (ed). pp: 95-100. Commission of the European Communities, EUR 14957, Luxembourg.

McAleece N, Gage JDG, Lambshead PJD, Paterson GLJ, Paterson GLJ, 1997. BioDiversity professional statistics analysis software. London Natural History Museum and Scottish Association for Marine Science, UK. http://www.sams.ac.uk/peter-lamont/biodiversity-pro. [01/02/2016].

Minitab Inc, 2013. Minitab Statistical Software, Release 16.2, USA, 512 pp.

Minor MA, Cianciolo JM, 2007. Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of land use types in New York. Appl Soil Ecol 35 (1): 140-153. http://dx.doi.org/10.1016/j.apsoil.2006.05.004

Minor MA, Norton RA, 2008. Effects of weed and erosion control on communities of soil mites (Oribatida and Gamasina) in short rotation willow plantings in Central New York. Can J For Res 38: 1061-1070. http://dx.doi.org/10.1139/X07-207

Moore JC, Walter DE, 1988. Arthropod regulation of micro-and mesobiota in below-ground detrital food webs. Annu Rev Entomol 33: 419-439. http://dx.doi.org/10.1146/annurev.en.33.010188.002223

Moritz M, 1963. Üiber Oribatidengemeinschaften Norddeutscher Laubwaldboden, unter Besonderer Berücksichtigung der die Verteilung Regelnden Milieubedingungen. Pedobiol 3: 142-24.

Nielsen UN, Osler GHR, Van der Wal R, Campbell CD, Campbell CD, David FRP, 2008. Soil pore volume and the abundance of soil mites in two contrasting habitats. Soil Biol Biochem 40(6): 1538-1541. http://dx.doi.org/10.1016/j.soilbio.2007.12.029

Osler GH, Beattie AJ, 2001. Contribution of oribatid and mesostigmatid soil mites in ecologically based estimates of global species richness. Austral Ecol 26: 70-79.

Osler GHR, Sommerkorn M, 2007. Toward a complete soil C and N cycle, incorporating the soil fauna. Ecol 88(7): 1611-1621. http://dx.doi.org/10.1890/06-1357.1

Pandit S, Bhattacharya T, 2000. Species composition and dominance diversity of oribatid mites of cultivated and uncultivated fields in Midnapore District. Proc Zool Soc Calcutta 53 (2): 99-104.

Penttinen R, Siira-Pietikäinen A, Huhta V, 2008. Oribatid mites in eleven different habitats in Finland. In: Integrative acarology; Bertrand M et al., (eds). Proc 6th Cong Eur Assoc Acarol, pp: 237-244.

Perdue JC, Crossley Jr DA, 1990. Vertical distribution of soil mites (Acari) in conventional and no-tillage agricultural systems. Biol Fert Soils 9: 135-138. http://dx.doi.org/10.1007/BF00335796

Peregrina F, 2005. Valoración agronómica de residuos industriales yesíferos y calizos, implicaciones sobre la dinámica del complejo de cambio, la disolución del suelo y la productividad en palexerults del Oeste de España. Doctoral Thesis, ETS Ingenieros Agronomos, UPM, Madrid.

Pérez-Íñigo C, 1993. Acari, Oribatei, Poronota. Serie Fauna Ibérica, vol 3, Museo Nacional de Ciencias Naturales, CSIC, Madrid, 320 pp.

Pérez-Íñigo C, 1997. Acari, Oribatei, Gymnonota I. Serie Fauna Ibérica, vol 9, Museo Nacional de Ciencias Naturales, CSIC, Madrid, 374 pp.

Petersen H, Luxton M, 1982. A comparative analysis of soil fauna and their role in decomposition processes. Oikos 39: 287-388. http://dx.doi.org/10.2307/3544689

Porazinska DL, Bardgett RD, Blaauw MB, Hunt HW, Hunt HW, Parsons AN, Seastedt TR, Wall DH, 2003. Relationships at the aboveground-belowground interface: plants, soil biota, and soil processes. Ecol Monogr 73: 377-395. http://dx.doi.org/10.1890/0012-9615(2003)073[0377:RATAIP]2.0.CO;2

Price DW, Benham Jr GS, 1977. Vertical distribution of soil-inhabiting microarthropods in an agricultural habitat in California. Environ Entomol 6 (4): 575-580. http://dx.doi.org/10.1093/ee/6.4.575

Rajski A, 1968. Autecological-zoogeographical analysis of moss mites (Acari, Oribatei) on the basis of fauna in the Poznan environ, Part II. Fragm Faun 14: 277-405. http://dx.doi.org/10.3161/00159301FF1968.14.12.277

Rhoton FE, 2000. Influence of time on soil response to no-till practices. J Soil Sci Soc Am 64: 700-709. http://dx.doi.org/10.2136/sssaj2000.642700x

Schatz H, 1996. Hommilben (Acari, Oribatida) in Trockenrasenböden des Virgentales (Osttirol, Österreich, Zentralalpen). Wiss Mitt Nationalpark Hohe Tauern 2: 97-114.

Schneider K, Renker C, Scheu S, Maraun M, Maraun M, 2004. Feeding biology of oribatid mites: a minireview. Phytophaga 14: 247-256.

Seastedt TR, 1984. The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29: 25-46. http://dx.doi.org/10.1146/annurev.en.29.010184.000325

Seniczak S, Seniczaka A, Kaczmarekb S, Zelaznac E, Zelaznac E, 2012. Systematic status of Oribatula Berlese, 1895 (Acari: Oribatida: Oribatulidae) in the light of the ontogeny of three species. Int J Acarol 38 (8): 664-680. http://dx.doi.org/10.1080/01647954.2012.719030

Siepel H, Van de Bund CF, 1988. The influence of management practices on the microarthropod community of grassland. Pedobiol 31: 339-354.

Simpson EH, 1949. Measurement of diversity. Nature 163: 688. http://dx.doi.org/10.1038/163688a0

Soil Survey Staff, 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington DC.

Spellerberg IF, Fedor PJ, 2003. A tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the 'Shannon-Wiener' Index. Glob Ecol Biogeogr 12: 177-179. http://dx.doi.org/10.1046/j.1466-822X.2003.00015.x

St John MG, Wall DH, Hunt HW, 2006. Are soil mite assemblages structured by the identity of native and invasive alien grasses? Ecol 87(5): 1314-1324. http://dx.doi.org/10.1890/0012-9658(2006)87[1314:ASMASB]2.0.CO;2

Starý J, 2005. Influence of grass sowing on oribatid mite communities (Acari: Oribatida) in initial successive stages during rich meadow recovery. In: Contributions to soil zoology in Central Europe I; Tajovský K, Schlaghamerský J, Pižl V (eds). pp: 155-161. ISB AS CR, Ceské Budèjovice.

Subías LS, 2015. Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acariformes, Oribatida) del mundo (excepto fósiles). Originally published in: Graellsia 60 (número extraordinario) (2004) 3-305. http://escalera.bio.ucm.es/usuarios/bba/cont/docs/RO_1.pdf. [01/02/2016]. http://dx.doi.org/10.3989/graellsia.2004.v60.iExtra.218

Subías LS, Arillo A, 2001. Acari, Oribatei, Gymnonota II. Serie Fauna Ibérica, vol 15, Museo Nacional de Ciencias Naturales, CSIC, Madrid, 289 pp.

Subías LS, Shtanchaeva U, 2012. Oribátidos (Acari, Oribatida) de las loreras (Prunus lusitanicus L.) de Extremadura (Suroeste de España) y descripción de una nueva especie de Cosmochthonius Berlese, 1910 (Cosmochthoniidae). Graellsia 68(1): 7-16. http://dx.doi.org/10.3989/graellsia.2012.v68.049

Subías LS, Shtanchaeva UY, Arillo A, 2015. Oribátidos (Acari, Oribatida) de España Peninsular e Islas Baleares, distribución. Originally published In: Monografías Electrónicas SEA 5 (2013). http://escalera.bio.ucm.es/usuarios/bba/cont/docs/RO_28.pdf. [01/02/2016].

Van Straalen NM, Verhoef HA, 1997. The development of a bioindicator system for a soil acidity based on arthropod pH preferences. J Appl Ecol 34(1): 217-232. http://dx.doi.org/10.2307/2404860

Vasiliu N, Ivan O, Dumitru M, 1995. Edaphic arthropods as bioindicators of agricultural soil pollution with heavy metals and fluorine. Soil Sci 29(2): 81-90.

Von Uexküll HR, Mutert E, 1995. Global extent, development and economic impact of acid soils. Plant Soil 171: 1-15. http://dx.doi.org/10.1007/BF00009558

Vreeken-Buijs MJ, Hassink J, Brussaard L, 1998. Relationships of soil microarthropod biomass with organic matter and pore size distribution in soils under different land use. Soil Biol Biochem 30(1): 97-106. http://dx.doi.org/10.1016/S0038-0717(97)00064-3

Wallwork JA, 1976. The distribution and diversity of soil fauna. Academic Press, London, 355 pp.

Wallwork JA, 1980. Desert soil microarthropods in an "r"-selected system. In: Soil biology as related to land use practices; Dindal D (ed). Proc Seventh Int Soil Zool Coll, ISSS, Washington DC, pp: 759-769.

Walter DE, Krantz GW, 2009. Collecting, rearing and preparing specimens. In: Manual of acarology; Walter DE, Krantz GW (eds). pp: 83-96. Texas University Press, USA.

Wardle DA, 2002. Communities and ecosystems: linking the aboveground and belowground Components. Princeton University Press, Princeton, USA, 408 pp.

Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Setälä H, Van der Putten WH, Wall DH, 2004. Ecological linkages between aboveground and belowground biota: a review. Science 304: 1629-1633. http://dx.doi.org/10.1126/science.1094875

Woolley TA, 1960. Some interesting aspects of oribatid ecology. Ann Entomol Soc Am 53: 251-253. http://dx.doi.org/10.1093/aesa/53.2.251

Zaitsev AS, Wolters V, Waldhart R, Dauber J, Dauber J, 2006. Long term succession of oribatid mites after conversion of croplands to grasslands. Appl Soil Ecol 34: 230-239. http://dx.doi.org/10.1016/j.apsoil.2006.01.005

Published
2016-03-02
How to Cite
Jorrín, J., & González-Fernández, P. (2016). Plant-conservative agriculture of acid and degraded Raña-grassland enhances diversity of the common soil mites (Oribatida). Spanish Journal of Agricultural Research, 14(1), e0302. https://doi.org/10.5424/sjar/2016141-7654
Section
Agricultural environment and ecology