Carbon dioxide enrichment: a technique to mitigate the negative effects of salinity on the productivity of high value tomatoes

  • Maria J. Sánchez-González IFAPA. Autovía del Mediterráneo, Sal. 420, Paraje San Nicolás, La Mojonera, 04745 Almería
  • Maria C. Sánchez-Guerrero IFAPA. Autovía del Mediterráneo, Sal. 420, Paraje San Nicolás, La Mojonera, 04745 Almería
  • Evangelina Medrano IFAPA. Autovía del Mediterráneo, Sal. 420, Paraje San Nicolás, La Mojonera, 04745 Almería
  • Manuel E. Porras IFAPA. Autovía del Mediterráneo, Sal. 420, Paraje San Nicolás, La Mojonera, 04745 Almería
  • Esteban J. Baeza IFAPA. Autovía del Mediterráneo, Sal. 420, Paraje San Nicolás, La Mojonera, 04745 Almería
  • Pilar Lorenzo IFAPA. Autovía del Mediterráneo, Sal. 420, Paraje San Nicolás, La Mojonera, 04745 Almería
Keywords: Solanum lycopersicum, CO2, electrical conductivity, yield, growth, radiation use efficiency

Abstract

The present study was conducted to determine the mitigating influence of greenhouse CO2 enrichment on the negative effects of salinity in Mediterranean conditions. Hybrid Raf (cv. Delizia) tomato plants were exposed to two salinity levels of the nutrient solution (5 and 7 dS/m) obtained by adding NaCl, and two CO2 concentrations (350 and 800 μmol/mol) in which CO2 enrichment was applied during the daytime according to a strategy linked to ventilation. Increasing water salinity negatively affected the leaf area index (LAI), the specific leaf area (SLA), the water use efficiency (WUE), the radiation use efficiency (RUE) and dry weight (DW) accumulation resulting in lower marketable yield. The high salinity treatment (7 dS/m) increased fruit firmness (N), total soluble solids content (SSC) and titratable acidity (TA), whereas pH was reduced in the three ripening stages: mature green/breaker (G), turning (T), and pink/light red (P). Also, the increase in electrical conductivity of the nutrient solution led to a general change in intensity of the sensory characteristics of tomato fruits. On the other hand, CO2 enrichment did not affect LAI although SLA was reduced. RUE and DW accumulation were increased resulting in higher marketable yield, through positive effects on fruit number and their average weight. WUE was enhanced by CO2 supply mainly through increased growth and yield. Physical-chemical quality parameters such as fruit firmness, TA and pH were not affected by CO2 enrichment whereas SSC was enhanced. Greenhouse CO2 enrichment did mitigate the negative effect of saline conditions on productivity without compromising organoleptic and sensory fruit quality.

Downloads

Download data is not yet available.

Author Biographies

Maria J. Sánchez-González, IFAPA. Autovía del Mediterráneo, Sal. 420, Paraje San Nicolás, La Mojonera, 04745 Almería

Maria C. Sánchez-Guerrero, IFAPA. Autovía del Mediterráneo, Sal. 420, Paraje San Nicolás, La Mojonera, 04745 Almería

Evangelina Medrano, IFAPA. Autovía del Mediterráneo, Sal. 420, Paraje San Nicolás, La Mojonera, 04745 Almería

Manuel E. Porras, IFAPA. Autovía del Mediterráneo, Sal. 420, Paraje San Nicolás, La Mojonera, 04745 Almería

Esteban J. Baeza, IFAPA. Autovía del Mediterráneo, Sal. 420, Paraje San Nicolás, La Mojonera, 04745 Almería

Pilar Lorenzo, IFAPA. Autovía del Mediterráneo, Sal. 420, Paraje San Nicolás, La Mojonera, 04745 Almería

References

Alonso FJ, Lorenzo P, Medrano E, Sánchez-Guerrero MC, 2012. Greenhouse sweet pepper productive response to carbon dioxide enrichment and crop pruning. Acta Hort 927: 345-352. http://dx.doi.org/10.17660/ActaHortic.2012.927.41

AOAC, 1984. Official methods of analysis, 14th Ed. Association of Official Analytical Chemists, Virginia, USA. pp: 414-420.

Artés F, Conesa MA, Hernández S, Gil MI, 1999. Keeping quality of fresh-cut tomatoes. Postharvest Biol Technol 17: 153-162. http://dx.doi.org/10.1016/S0925-5214(99)00044-7

Auerswald H, Schwarz D, Kornelson C, Krumbein A, Bruckner B, 1999. Sensory analysis, sugar and acid content of tomato at different EC values of the nutrient solution. Sci Hortic 82: 227-242. http://dx.doi.org/10.1016/S0304-4238(99)00058-8

Baille A, 1999. Greenhouse structure and equipment for improving crop production in mild-winter climates. Acta Hort 491: 37-47. http://dx.doi.org/10.17660/ActaHortic.1999.491.4

Bowes G, 1993. Facing the inevitable: Plants and increasing atmospheric CO2. Annu Rev Plant Physiol Plant Mol Biol 44: 309-332. http://dx.doi.org/10.1146/annurev.pp.44.060193.001521

Challa H, Heuvelink E, Van Meeteren U, 1995. Crop growth and development. In: Greenhouse climate control: An integrated approach; Bakker JC, Bot GPA, Challa H & Van de Braak NJ (Eds.), Wageningen, The Netherlands, pp: 62-84.

Cuartero J, Fernández-Muñoz R, 1999. Tomato and salinity. Sci Hortic 78: 83-125. http://dx.doi.org/10.1016/S0304-4238(98)00191-5

Cuartero J, Bolarin MC, Asins MJ, Moreno V, 2006. Increasing salt tolerance in the tomato. J Exp Bot 57(5): 1045-1058. http://dx.doi.org/10.1093/jxb/erj102

De Koning ANM, 1993. Growth of a tomato crop. Measurements for model validation. Acta Hort 328: 141-147. http://dx.doi.org/10.17660/ActaHortic.1993.328.11

Del Amor FM, Martinez V, Cerdá A, 2001. Salt tolerance of tomato plants as affected by stage of plant development. HortScience 36: 1260-1263.

Dorais M, Papadopoulos AP, Gosselin A, 2001. Influence of electric conductivity management on greenhouse tomato yield and fruit quality. Agronomie 21: 367-383. http://dx.doi.org/10.1051/agro:2001130

Escobar I, Berenguer JJ, Navarro M, Cuartero J, 2012. La calidad gustativa y nutricional como atributos para liderar el mercado de tomate en fresco. Caja Rural de Granada, Granada, 80 pp.

Fabre R, Duval M, Jeannequin B, 2011. Effect of the salinity on the organoleptic quality and yield of early-grown soilless grafted tomatoes under heated glasshouses in the south of France. Cahiers Agricultures 20: 266-273.

Giménez C, Hernández J, Guillén A, Castilla N, 1995. Absorción de radiación y producción de biomasa en un cultivo de patata con diferentes tipos de acolchado plástico. Actas del VI Congreso de la Sociedad Española de Ciencias Hortícolas, Barcelona, p 175.

Heuvelink E, 1996. Tomato growth and yield: quantitative analysis and synthesis. Ph.D. Dissertation. Wageningen Agric Univ, Wageningen, 326 pp.

Islam MS, Matsui T, Yoshida Y, 1996. Effect of carbon dioxide enrichment on physico-chemical and enzymatic changes in tomato fruits at various stages of maturity. Sci Hortic 65: 137-149. http://dx.doi.org/10.1016/0304-4238(95)00867-5

Johnson RW, Dixon MA, Lee DR, 1992. Water relations of the tomato fruit during growth. Plant Cell Environ 15: 947-953. http://dx.doi.org/10.1111/j.1365-3040.1992.tb01027.x

Kader AA, Morris LL, Stevens MA, Albright-Holton M, 1978. Composition and flavour quality of fresh market tomatoes as influenced by some postharvest handling procedures. J Am Soc Hortic Sci 103: 6-13.

Krauss S, Wilfried Schnitzler H, Grassmann J, Woitke M, 2006. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. J Agric Food Chem 54: 441-448. http://dx.doi.org/10.1021/jf051930a

Li JH, Sagi M, Gale J, Volokita M, Novoplansky A, 1999. Response of tomato plants to saline water as affected by carbon dioxide supplementation. I Growth, yield and fruit quality. J Hortic Sci Biotech 74 (2): 238-242. http://dx.doi.org/10.1080/14620316.1999.11511101

Li JH, Stanghellini C, 2001. Analysis of the effect of EC and potential transpiration on vegetative growth of tomato. Sci Hortic 89: 9-21. http://dx.doi.org/10.1016/S0304-4238(00)00219-3

Lorenzo P, Maroto C, Castilla N, 1990. CO2 in plastic greenhouse in Almeria (Spain). Acta Hort 268: 165-169. http://dx.doi.org/10.17660/ActaHortic.1990.268.15

Lorenzo P, Sánchez-González MJ, Sánchez-Guerrero MC, Medrano E, Cabezas MJ, 2013. Influencia del enriquecimiento carbónico y la salinidad sobre la producción de tomate cv. Delizia (híbrido RAF). Actas del VII Congreso Ibérico de Agroingeniería y Ciencias Hortícolas, Madrid (Spain). pp: 756-761.

Magán JJ, 2005. Respuesta a la salinidad del tomate larga vida en cultivo sin suelo recirculante en el sureste español. Tesis doctoral. Universidad de Almería. 171 pp.

Magán JJ, Gallardo M, Thompson RB, Lorenzo P, 2008. Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions. Agr Water Manage 95: 1041-1055. http://dx.doi.org/10.1016/j.agwat.2008.03.011

Maggio A, Dalton FN, Piccinni G, 2002. The effects of elevated carbon dioxide on static and dynamic indices for tomato salt tolerance. Eur J Agron 16: 197-206. http://dx.doi.org/10.1016/S1161-0301(01)00128-9

Monteith JL, 1977. Climate and the efficiency of crop production in Britain. Phil Trans R Soc London B 281: 277-294. http://dx.doi.org/10.1098/rstb.1977.0140

Nederhoff EM, 1984. Light interception of a cucumber crop at different stages of growth. Acta Hort 148: 525-534. http://dx.doi.org/10.17660/ActaHortic.1984.148.66

Nederhoff EM, 1994. Effects of CO2 concentration on photosynthesis, transpiration and production of greenhouse fruit vegetable crops. PhD Thesis, Wageningen Agric Univ, 213pp.

Nilsen S, Hovland C, Dons C, Sletten SP, 1983. Effect of CO2 enrichment on photosynthesis, growth and yield of tomato. Sci Hort 20: 1-14. http://dx.doi.org/10.1016/0304-4238(83)90106-1

OECD, 2002. International standardization of fruit and vegetables. Tomatoes. OECD Publications, France. 88 p. (51 2002 04 3 P). ISBN 92-64-09713-9.

OJ, 2008. Commission regulation (EC) No 1221/2008 amending Regulation (EC) No 1580/2007 laying down implementing rules of Council Regulations (EC) No 2200/96, (EC) No 2201/96 and (EC) No 1182/2007 in the fruit and vegetable sector as regards marketing standards. Official Journal of the European Union L 336, 13 December, pp. 1-80. https://www.fsai.ie/uploadedFiles/Legislation/Legislation_Update/Reg1221_2008.pdf. [Consulted 18 April 2015].

Özçelik N, Akilli M, 1999. Effects of CO2 enrichment on vegetable growth, yield and quality of greenhouse grown tomatoes in soil and soilless cultures. Acta Hort 486: 155-160. http://dx.doi.org/10.17660/ActaHortic.1999.491.22

Petersen KK, Willumsen J, Kaack K, 1998. Composition and taste of tomatoes as affected by increased salinity and different salinity sources. J Hort Sci Biotech 73: 205-215. http://dx.doi.org/10.1080/14620316.1998.11510966

Rozema J, 1993. Response to CO2 enrichment: Interaction with soil and atmospheric conditions. Plant Ecol 104-105: 173-190. http://dx.doi.org/10.1007/BF00048152

Sánchez-González MJ, Sánchez-Guerrero MC, Medrano E, Porras ME, Baeza EJ, García ML, Lorenzo P, 2014. Efectos de la salinidad y el enriquecimiento carbónico en invernadero sobre la bioproductividad y el contenido de nutrientes en un cultivo de tomate híbrido Raf (cv. Delizia). Acta Hortic 66: 78-84.

Sánchez-Guerrero MC, Lorenzo P, Medrano E, Castilla N, Soriano T, Baille A, 2005. Effect of variable CO2 enrichment on greenhouse production in mild winter climate. Agric For Meteorol 132: 244-252. http://dx.doi.org/10.1016/j.agrformet.2005.07.014

Sánchez-Guerrero MC, Lorenzo P, Medrano E, Baille A, Castilla N, 2009. Effects of EC-based irrigation scheduling and CO2 enrichment on water use efficiency of a greenhouse cucumber crop. Agric Water Manage 96: 429-436. http://dx.doi.org/10.1016/j.agwat.2008.09.001

Sánchez-Guerrero MC, Alonso F, Lorenzo P, Medrano E, 2010. Enriquecimiento carbónico del aire. In: Manejo del clima en el invernadero Mediterráneo; Sánchez-Guerrero MC et al. (Eds.). IFAPA, Consejería de Agricultura y Pesca. pp: 83-94.

Sánchez Pérez EM, García J, Iglesias MJ, López F, Toresano F, Camacho F, 2011. HRMAS-nuclear magnetic resonance spectroscopy characterization of tomato "flavor varieties" from Almeria (Spain). Food Res Int 44: 3212-3221. http://dx.doi.org/10.1016/j.foodres.2011.08.012

Saranga Y, Zamir D, Marani A, Rudich J, 1991. Breeding tomatoes for salt tolerance: field evaluation of Lycopersicon germplasm for yield and dry-matter production. J Am Soc Horti Sci 116: 1067-1071.

Zushi K, Matsuzoe N, 2011. Utilization of correlation network analysis to identify differences in sensory attributes and organoleptic compositions of tomato cultivars grown under salt stress. Sci Hortic 129: 18-26. http://dx.doi.org/10.1016/j.scienta.2011.02.011

Published
2016-06-01
How to Cite
Sánchez-González, M. J., Sánchez-Guerrero, M. C., Medrano, E., Porras, M. E., Baeza, E. J., & Lorenzo, P. (2016). Carbon dioxide enrichment: a technique to mitigate the negative effects of salinity on the productivity of high value tomatoes. Spanish Journal of Agricultural Research, 14(2), e0903. https://doi.org/10.5424/sjar/2016142-8392
Section
Plant production (Field and horticultural crops)