Assessing the effects of soil liming with dolomitic limestone and sugar foam on soil acidity, leaf nutrient contents, grape yield and must quality in a Mediterranean vineyard

  • Miguel A. Olego RGA Bioinvestigación, SL. Avda. de Portugal, 41, 24071 León
  • Fernando Visconti IVIA. Centro para el Desarrollo de la Agricultura Sostenible. Ctra. Moncada-Náquera km 4.5, 46113 Moncada (Valencia)
  • Miguel J. Quiroga Universidad de León. Instituto de Investigación de la Viña y el Vino (IIVV). Avda. de Portugal, 41, 24071 León
  • José M. de Paz IVIA. Centro para el Desarrollo de la Agricultura Sostenible. Ctra. Moncada-Náquera km 4.5, 46113 Moncada (Valencia)
  • Enrique Garzón-Jimeno Universidad de León. Instituto de Investigación de la Viña y el Vino (IIVV). Avda. de Portugal, 41, 24071 León
Keywords: acid soil, cultivar ‘Mencía’, fruit set, aluminium saturation, total acidity


Aluminium toxicity has been recognized as one of the most common causes of reduced grape yields in vineyard acid soils. The main aim of this study was to evaluate the effect of two liming materials, i.e. dolomitic lime and sugar foam, on a vineyard cultivated in an acid soil. The effects were studied in two soil layers (0-30 and 30-60 cm), as well as on leaf nutrient contents, must quality properties and grape yield, in an agricultural soil dedicated to Vitis vinifera L. cv. ‘Mencía’ cultivation. Data management and analysis were performed using analysis of variance (ANOVA). As liming material, sugar foam was more efficient than dolomitic limestone because sugar foam promoted the highest decrease in soil acidity properties at the same calcium carbonate equivalent dose. However, potassium contents in vines organs, including leaves and berries, seemed to decrease as a consequence of liming, with a concomitant increase in must total acidity. Soil available phosphorus also decreased as a consequence of liming, especially with sugar foam, though no effects were observed in plants. For these reasons fertilization of this soil with K and P is recommended along with liming. Grape yields in limed soils increased, although non-significantly, by 30%. This research has therefore provided an important opportunity to advance in our understanding of the effects of liming on grape quality and production in acid soils.


Download data is not yet available.


Álvarez E, Viadé A, Fernández-Marcos ML, 2009. Effect of liming with different sized limestone on the forms of aluminium in a Galician soil (NW Spain). Geoderma 152: 1–8.

Asadi M, 2007. Beet-sugar handbook. Wiley & Sons, Hoboken, NJ, USA. 866 pp.

Augustin A, Mindrup M, Meiwes KJ, 1997. Recuperation of magnesium deficiency through fertilization. Soil chemistry. In: Magnesium deficiency in forest ecosystems; Hüttl RF, Schaff W (eds.). pp: 255-273. Kluwer Acad. Publ., Dordrecht, The Netherlands.

Bavaresco L, Gatti M, Fregoni M, 2010. Nutritional deficiencies. In: Methodologies and results in grapevine research; Delrot S, Medrano H, Or E, Bavaresco L, Grando S (eds.). pp: 165-191. Springer, Dordrecht, The Netherlands.

Bouyoucos G, 1962. Hydrometer method improved for making particle size analyses of soils. Agron J 54: 464-465.

Calleja A, 1978. La mineralización de muestras vegetales para el análisis de minerales por espectrofotometría y colorimetría. An Fac Vet León 24: 175-177.

Cançado GMA, Ribeiro AP, Piñeros MA, Miyat LY, Alvarenga ÁA, Villa F, Pasqual M, Purgatto E, 2009. Evaluation of aluminium tolerance in grapevine rootstocks. Vitis 48 (4): 167-173.

Cochrane TT, Salinas JG, Sánchez PA, 1980. An equation for liming acid mineral soils to compensate crop aluminium tolerance. Trop Agr 57 (2): 133–140.

Conde C, Silva P, Fontes N, Dias ACP, Tavares RM, Sousa MJ, Agasse A, Delrot S, Gerós H, 2007. Biochemical changes throughout grape berry development and fruit and wine quality. Food 1 (1): 1-22.

Dibb DW, Thompson WR Jr, 1985. Interaction of potassium with other nutrients. In: Potassium in agriculture; Munson RD (ed.). pp: 515-533. Soil Science Society of America, Madison, WI, USA.

Edmeades DC, Ridley AM, 2003. Using lime to ameliorate topsoil and subsoil acidity. In: Handbook of soil acidity; Zdenko R (ed.). pp: 297-336. Marcel Dekker, Inc., NY, USA.

ESD, 2004. European soil database, vers. 1.0. European Soil Bureau Network, European Commission. The Institute for Environment and Sustainability, Ispra (Italy).

Espejo R, 2001. El uso de la espuma de azucarería, fosfoyeso y residuos dolomíticos de convertidor como enmendantes de suelos ácidos. Proc I Int Congr Manage Org Waste Rural Land Grange Areas, Pamplona (Spain), February 22-23. pp: 377-386.

Fageria NK, 1983. Ionic interactions in rice plants from dilute solutions. Plant Soil 70: 309-316.

Fageria NK, Baligar VC, 2008. Ameliorating soil acidity of tropical oxisols by liming for sustainable crop production. Adv Agron 99: 345-399.

Field A, 2012. Discovering statistics using R. SAGE Publications, London. 992 pp.

Fráguas JC, 1999. Tolerância de porta-enxerto de videira ao aluminio do solo. Pesqui Agropecu Bras 34(7): 1193-1200.

Fregoni M, 2005. Viticoltura di qualitá. Tecniche Nuove, Milano, Italia. 939 pp.

García Navarro FJ, Amorós Ortiz-Villajos JA, Sánchez-Jiménez CJ, Bravo Martín-Consuegra S, Márquez Cubero E, Jiménez Ballesta R, 2009. Application of sugar foam to red soils in a semiarid Mediterranean environment. Environ Earth Sci 59 (3): 603-611.

González P, Ordoñez R, Espejo R, Peregrini F, 2005. Efectos a medio plazo de la espuma de azucarería, caliza magnesiana y yeso sobre las bases intercambiables y el aluminio en el perfil de un suelo ácido. Estudios de la Zona No Saturada del Suelo VII: 185-189.

IDEE, 2012. Infraestructura de datos espaciales de España. Consejo Superior Geográfico, Ministerio de Fomento. [5 August 2012].

Illera V, Garrido F, Vizcayno C, García-González MT, 2004. Field applications of industrial by-products as Al toxicity amendments: chemical and mineralogical implications. Eur J Soil Sci 55: 681-692.

IUSS Working Group WRB, 2006. World Reference Base for Soil Resources 2006. World Soil Resources Reports No. 103. FAO, Rome. 132 pp.

Jackson RS, 2014. Wine science: principles and applications, 4th edition. Academic Press, London. 960 pp.

Kirchhof G, Blackwell J, Smart RE, 1991. Growth of vineyard roots into segmentally ameliorated acidic subsoils. Plant Soil 134 (1): 121-126.

Little I, 1964. The determination of exchangeable aluminium in soils. Aust J Soil Res 2: 76-82.

Loeppert RH, Suarez DL, 1996. Carbonate and gypsum. In: Methods of soil analysis, Part III; Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA (eds.). pp: 437-474. Chemical Methods. Soil Sci Soc Am, Madison, WI, USA.

MAPA, 1993. Métodos oficiales de análisis, tomo III. Ministerio de Agricultura, Pesca y Alimentación, Secretaría General Técnica, Madrid. 662 pp.

Marschner P, 2012. Marschner's mineral nutrition of higher plants, 3rd edition. Academic Press, London. 651 pp.

Meyer BR, Roux ELe, Renan MJ, Peisach M, 1984. Pixe analysis for the study of toxic effects of aluminium in vines. Nucl Instrum. Methods Phys Res Sect B 3(1-3): 557-560.

OIV, 2014. Compendium of international methods of wine and must analysis, Volume 1. International Organization of Wine and Vine, Paris. 498 pp

Olego MA, Coque JJR, Garzón Jimeno E, 2014. Application of sugar foam to vineyard acid soils under Mediterranean conditions. South Afr J Enol Viticult 35(2): 178-184.

Olsen SR, Cole CV, Watanabe FS, Dean LA, 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA, circular 939, United States Government Printing Office, Washington, DC.

R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing. [15 June 2013].

Saint-Cricq N, Vivas N, Glories Y, 1998. Maturation phénolique: définition et contrôle. Revue Française d'OEnologie 173: 22-25.

Sánchez PA, Uheara G, 1980. Management considerations for acid soils with phosphorus fixation capacity. In: The role of phosphorus in agriculture; Khasawneh FE, Sample EC, Kamprath EJ (eds.). pp: 263-310. Springer, Madison, WI, USA.

SIAR, 2012. Sistema de Información agroclimática para el regadío. Ministerio de Agricultura, Pesca y Alimentación, Spain. [23 May 2012].

Sikora LJ, Azad MI, 1993. Effect of compost-fertilizer combinations on wheat yields. Compost Sci Util 1: 93-96.

Soil Survey Staff, 2010. Keys to soil taxonomy, 11th edition. USDA-Natural Resources Conservation Service, Washington DC, USA. 346 pp.

Tisdale SL, Nelson WL, Beaton JD, Havlin JL, 1993. Soil acidity and basicity. In Soil fertility and fertilizers, 5th ed. Macmillan Publ., New York. pp: 364-404.

Traina SJ, Sposito G, Hesterberg D, Kafkafi D, 1986. Effects of pH and organic acids on orthophosphate solubility in an acidic, montmorillonitic soil. Soil Sci Soc Am J 50: 45-52.

Vidal M, Urbano P, López A, Blázquez R, Roquero C, 1997. Usefulness and efficiency of the waste of the sugar foam used as liming matter. Proc XI Int World Fertilizer Congr, Vol III, Gent (Belgium), Sept 7-13. pp: 116-125.

Vidal M, Garzón JE, García V, Villa E, 2006. Differentiating the amending effects of calcareous materials applied to acid soils by use of optimal scaling procedures. Agrochimica 50 (3-4): 132-147.

Vidal-Bardán M, Villa-Bermejo E, 2012. Fractionation of extractable aluminium and biomass production in an acid soil treated with calcareous amendments. Span J Agric Res 10 (2): 513-520.

Wooldridge J, Louw PJE, Conradie WJ, 2010. Effects of liming to near-neutral pH on Vitis vinifera L. S Afr J Enol Vitic 31 (1): 34-37.

Zapata RD, 2004. Química de la acidez del suelo. Cargraphics, Cali, Colombia. 206 pp.

How to Cite
Olego, M. A., Visconti, F., Quiroga, M. J., de Paz, J. M., & Garzón-Jimeno, E. (2016). Assessing the effects of soil liming with dolomitic limestone and sugar foam on soil acidity, leaf nutrient contents, grape yield and must quality in a Mediterranean vineyard. Spanish Journal of Agricultural Research, 14(2), e1102.
Soil science