Genetic diversity of the floury race of maize Avati Morotî from the Guaraní tribe in Paraguay

  • Orlando Noldin Centro de Investigación Capitán Miranda, Instituto Paraguayo de Tecnología Agraria. Ruta VI, km 17. Distrito de Capitán Miranda. Depto. de Itapúa
  • Pedro Revilla Misión Biológica de Galicia (CSIC), Apdo. 28, 36080 Pontevedra
  • Bernardo Ordás Misión Biológica de Galicia (CSIC), Apdo. 28, 36080 Pontevedra
Keywords: Zea mays, germplasm, biodiversity, heterozygosity, polymorphism

Abstract

Avati Morotî is a race of floury maize widely used by the Guarani people in South America, whose variability and potential value for breeding has been neglected so far. The objective of this research was to explore the genetic variability within the main Paraguayan race Avati Morotî. We studied the genetic variability available in the 20 accessions of Paraguayan Avati Morotî included in the South American core collection made by CIMMYT. Thirty individuals per accession were genotyped with 30 SSR (simple sequence repeat); we determined genetic diversity and made a cluster analysis in order to define genetic relationships among accessions. Mean of polymorphic loci (0.96), alleles per locus (3.57), alleles per polymorphic locus (3.65), expected (0.48) and observed (0.43) heterozygosity, and coefficient of consanguinity (0.12) revealed that Avati Morotî contains a genetic diversity comparable to the most variable maize races of maize. The cluster analysis classified the 20 populations in eight groups, five of them with a single accession, and a large group representing a central pool of germplasm. These results indicate that there is a large variability available in this race, and encourage the collection of more samples of Avati Morotî, particularly in marginal areas that were scarcely sampled.

Downloads

Download data is not yet available.

References

Aci MM, Revilla P, Morsli A, Djemel A, Belalia N, Kadri Y, Khelifi-Saloui M, Ordás B, Khelifi L, 2013. Genetic diversity in Algerian maize (Zea mays L.) landraces using SSR markers. Maydica 58: 304-310.

Beyene Y, Botha AM, MybuZarg A, 2006. Genetic diversity among traditional Ethiopian highland maize accessions assessed by simple sequence repeat (SSR) markers. Gen Res Crop Evol 53: 1579-1588. http://dx.doi.org/10.1007/s10722-005-8509-y

Bracco M, Lia VV, Hernández JC, Poggio L, Gottlieb AM, 2012. Genetic diversity of maize landraces from lowland and highland agro-ecosystems of Southern South America: implications for the conservation of native resources. Ann Appl Biol 160: 308-321. http://dx.doi.org/10.1111/j.1744-7348.2012.00544.x

Brieger FG, Gurgel JT, Paterniani E, Blumenschein A, Alleoni MR, 1958. Races of maize in Brazil and other eastern South American countries. Pub. 593. NAS-NRC, Washington, DC.

Goodman MM, Brown WL, 1988. Races of corn. In: Corn and corn improvement, 3rd edition; Sprague GF, Dudley JW (eds), pp: 33-79. Am. Soc. Agron., Madison, WI, USA.

Hoxha S, Shariflou MR, Sharp P, 2004. Evaluation of genetic diversity in Albanian maize using SSR markers. Maydica 49: 97-103.

Lewis P, Zaykin D, 2002. Genetic data analysis (GDA): User’s manual. URL: http://phylogeny.uconn.edu/software/

Liu YG, Whittier RF, 1994. Rapid preparation of megabase plant DNA from nuclei in agarose plugs and microbeads. Nucleic Acids Res 22: 2168-2169. http://dx.doi.org/10.1093/nar/22.11.2168

MAG, 2010. Guía técnica de rubros agropecuarios; Delgado V, Cabral I (eds.). Ministerio de Agricultura y Ganaderia, Paraguay. pp: 32-35.

Nei M, 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.

Nei M, Li W, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269

Paterniani E, Goodman M, 1978. Races of maize in Brazil and adjacent areas. CIMMYT, México, DF.

Rebourg C, Chastanet M, Gouesnard B, Welcker C, Dubreuil P, Charcosset A, 2003. Maize introduction into Europe: The history reviewed in the light of molecular data. Theor Appl Genet 106: 895-903.

Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA, Vasal SK, Srinivasan G, Bohn M, Frisch M, 2003a. Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Sci 43: 1275-1282. http://dx.doi.org/10.2135/cropsci2003.1275

Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA, Vasal SK, Beck D, Bohn M, Frisch M, 2003b. Use of SSRs for establishing heterotic groups in subtropical maize. Theor Appl Genet 107: 947–957. http://dx.doi.org/10.1007/s00122-003-1333-x

Reif JC, Xia XC, Melchinger AE, Warburton M, Hoisington D, Beck D, Bohn M, Frish M, 2004. Genetic Diversity determined within and among CIMMYT maize population of tropical, subtropical and temperate germplasm by SSR markers. Crop Sci 44: 326-334. http://dx.doi.org/10.2135/cropsci2004.3260

Reif JC, Hamrit S, Heckenberger M, Schirack W, Maurer HP, Bohn M, Melchinger AE, 2005. Genetic structure and diversity of European flint maize populations determined with SSR analysis of individuals and bulks. Theor Appl Genet 111: 906-913. http://dx.doi.org/10.1007/s00122-005-0016-1

Reif JC, Warburton M, Xia XC, Hoisington D, Crossa J, Taba S, Muminovic J, Bohn M, Frish M, Melchinger AE, 2006. Grouping of accession of Mexican races of maize revisited with SSR markers. Theor Appl Genet 113: 177-185. http://dx.doi.org/10.1007/s00122-006-0283-5

Revilla P, Soengas P, Malvar RA, Cartea ME, Ordás A, 1998. Isozyme variation and Historical relationships among the maize races of Spain. Maydica 43:175-182.

Revilla P, Soengas P, Cartea ME, Malvar RA, Ordás A, 2003. Isozyme variability among European maize populations and the introduction of maize in Europe. Maydica 48:141-152.

Robert LM, Grant UJ, Ramírez E, Hatheway W, Smith DL, Mangelsdorf PC, 1957. Races of maize in Colombia. Pub. 510. NAS-NRC, Washington, DC.

Romay MC, Butrón A, Ordás A, Revilla P, Ordás B, 2012. Effects of recurrent selection on the genetic structure of two broad base Spanish maize synthetics. Crop Sci 52: 1493-1502. http://dx.doi.org/10.2135/cropsci2011.10.0552

Salhuana W, Machado V, 1999. Races of maize in Paraguay. ARS/USDA and Maize Program of the Paraguay, Ministry of Agriculture and Livestock, Paraguari (Paraguay), Special Publication. 143 pp.

Sánchez JJ, Goodman MM, Bird RMcK, Stubber CW, 2006. Izozyme and morphological variation in maize of five Andean countries. Maydica 51: 25-42.

Sánchez JJ, Goodman MM, Stuber CW, 2007. Racial diversity of maize in Brazil and adjacent areas. Maydica 52: 13-30.

Sauer CO, 1966. The early Spanish main. University of California Press, Berkeley and Los Angeles, CA, USA.

Smith JSC, 1988. Diversity of United States Hybrid Maize Germplasm; Isozymic and chromatographic evidence. Crop Sci 28: 63-69. http://dx.doi.org/10.2135/cropsci1988.0011183X002800010016x

Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sánchez JG, Doebley J, 2008. Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Am J Bot 95:1240-1253. http://dx.doi.org/10.3732/ajb.0800097

Warburton M, Reif JC, Frish M, Bohn M, Bedoya C, Xia XC, Crossa J, Franco J, Hoisington D, Pixley K, Taba S, Melchinger AE, 2008. Genetic Diversity in CIMMYT nontemperate maize germplasm: landraces, open pollinated varieties and inbred lines. Crop Sci 48: 617-624. http://dx.doi.org/10.2135/cropsci2007.02.0103

Ward JH Jr, 1963. Hierarchical grouping to optimize an objective function. J Am Statist Assoc 58: 236-244. http://dx.doi.org/10.1080/01621459.1963.10500845

Wietholter P, Cruz de Melo MJ, de Freitas T, Delmar S, Barboza JF, 2008. Genetic variability in corn landraces from southern Brazil. Maydica 53: 151-159.

Wright S, 1978. Evolution and genetics of populations. IV. The University of Chicago Press. Chicago, IL, USA. 91 pp.

Published
2016-08-31
How to Cite
Noldin, O., Revilla, P., & Ordás, B. (2016). Genetic diversity of the floury race of maize Avati Morotî from the Guaraní tribe in Paraguay. Spanish Journal of Agricultural Research, 14(3), e0707. https://doi.org/10.5424/sjar/2016143-9214
Section
Plant breeding, genetics and genetic resources