Analysis of operating speed and power consumption of a gear-driven rotary planting mechanism for a 12-kW six-row self-propelled onion transplanter

Resumen

 

 

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Md Nasim REZA, Chungnam National University, Graduate School, Dept. of Agricultural Machinery Engineering, Daejeon 34134, Korea

 

 

Mohammod ALI, Chungnam National University, Graduate School, Dept. of Agricultural Machinery Engineering, Daejeon 34134, Korea

 

 

Eliezel HABINEZA, Chungnam National University, Graduate School, Dept. of Smart Agricultural Systems, Daejeon 34134, Korea

 

 

Md Sazzadul KABIR, Chungnam National University, Graduate School, Dept. of Smart Agricultural Systems, Daejeon 34134, Korea

 

 

Md Shaha Nur KABIR, Chungnam National University, Graduate School, Dept. of Agricultural Machinery Engineering, Daejeon 34134, Korea

 

 

Seung-Jin LIM, TYM Co., Ltd., Iksan 54576, Korea

 

 

Il-Su CHOI, Rural Development Administration (RDA), National Institute of Agricultural Science, Jeonju 54875, Korea

 

 

Citas

Baloch RA, Baloch SU, Baloch SK, Baloch HN, Badini SA, Bashir W, et al., 2014. Economic analysis of onion (Allium cepa L.) production and marketing in district Awaran, Balochistan. Econ Anal 5(24): 192-206.

Chowdhury M, Gulandaz MA, Kiraga S, Ali M, Reza MN, Kwon HJ, et al., 2021. Turning stability analysis of a 12-kW self-propelled riding-type automatic onion transplanter to ensure user safety. IOP Conf Series: Earth Environ Sci 924(1): 012014. https://doi.org/10.1088/1755-1315/924/1/012014

Dihingia PC, Prasanna Kumar GV, Sarma PK, 2016. Development of a hopper-type planting device for a walk-behind hand-tractor-powered vegetable transplanter. J Biosyst Eng 41(1): 21-33. https://doi.org/10.5307/JBE.2016.41.1.021

Dong Y, Cheng Z, Meng H, Liu H, Wu C, Khan AR, 2013. The effect of cultivar, sowing date and transplant location in field on bolting of Welsh onion (Allium fistulosum L.). BMC Plant Biol 13(1): 1-12. https://doi.org/10.1186/1471-2229-13-154

Dossa F, Miassi, Y, Banzou K, 2018. Onion (Allium cepa) production in urban and peri-urban areas: financial performance and importance of this activity for market gardeners in Southern Benin. Curr Anthropol 3(2). https://doi.org/10.32474/CIACR.2018.03.000159

Du S, Yu J, Wang W, 2018. Determining the minimal mulch film damage caused by the up-film transplanter. Adv Mech Eng 10(3): 1-13. https://doi.org/10.1177/1687814018766777

FAO, 2021. FAOSTAT. http://www.fao.org/faostat/en/#data [Nov 13, 2021).

Gavino RB, Tiw-an CC, 2020. Assessment of mechanization level of onion production in Nueva Ecija. CLSU Int J Sci Technol 4(1): 81-98. https://doi.org/10.22137/ijst.2020.v4n1.06

Geisseler D, Ortiz RS, Diaz J, 2022. Nitrogen nutrition and fertilization of onions (Allium cepa L.)-A literature review. Sci Hortic 291: 110591. https://doi.org/10.1016/j.scienta.2021.110591

Han C, Hu X, Zhang J, You J Li H, 2021. Design and testing of the mechanical picking function of a high-speed seedling auto-transplanter. Artif Intellig Agr 5: 64-71. https://doi.org/10.1016/j.aiia.2021.02.002

Han LH, Mao HP, Hu JP, Kumi F, 2019. Development of a riding-type fully automatic transplanter for vegetable plug seedlings. Span J Agric Res 17(3): e0205. https://doi.org/10.5424/sjar/2019173-15358

Iqbal MZ, Islam MN, Chowdhury M, Islam S, Park T, Kim YJ, et al., 2021. Working speed analysis of the gear-driven dibbling mechanism of a 2.6 kW walking-type automatic pepper transplanter. Machines 9(1): 6. https://doi.org/10.3390/machines9010006

Islam MN, Iqbal MZ, Ali M, Chowdhury M, Kabir MSN, Park T, et al., 2020. Kinematic analysis of a clamp-type picking device for an automatic pepper transplanter. Agriculture 10(12): 627. https://doi.org/10.3390/agriculture10120627

Ji JT, He YK, Du XW, He ZT, Du MM, Zheng ZH, et al., 2013. Design of the up-film transplanter and kinematic analysis of its planting devices. Proc Int Conf Adv Mechatronic Syst, pp: 312-316. IEEE, New York. https://doi.org/10.1109/ICAMechS.2013.6681800

Jin X, Cheng Q, Zhao B, Ji J, Li M, 2020. Design and test of 2ZYM-2 potted vegetable seedlings transplanting machine. Int J Agr Biol Eng 13(1): 101-110. https://doi.org/10.25165/j.ijabe.20201301.5494

Jin X, Li R, Tang Q, Wu J, Jiang L, Wu C, 2022. Low-damage transplanting method for leafy vegetable seedlings based on machine vision. Biosyst Eng 220: 159-171. https://doi.org/10.1016/j.biosystemseng.2022.05.017

Jo JS, Okyere FG, Jo JM, Kim HT, 2018. A study on improving the performance of the planting device of a vegetable transplanter. J Biosyst Eng 43(3): 202-210. https://doi.org/10.1002/prep.201700174

Khadatkar A, Mathur SM, Dubey K, BhusanaBabu V, 2021. Development of embedded automatic transplanting system in seedling transplanters for precision agriculture. Artif Intellig Agr 5: 175-184. https://doi.org/10.1016/j.aiia.2021.08.001

Kim HC, Cho YH, Ku YG, Bae JH, 2015. Seedling qualities of hot pepper according to seedling growth periods and growth and yield after planting. Hortic Sci Technol 33(6): 839-844. https://doi.org/10.7235/hort.2015.15083

Liguori L, Califano R, Albanese D, Raimo F, Crescitelli A, Di Matteo M, 2017. Chemical composition and antioxidant properties of five white onion (Allium cepa L) landraces. Hindawi J Food Qual 2017: 6873651. https://doi.org/10.1155/2017/6873651

Li H, Cao W, Li S, Liu J, Chen B, Ma X, 2017. Development of 2ZXM-2 automatic plastic film mulching plug seedling transplanter for vegetable. T Chin Soc Agr Eng 33(15): 23-33.

Liu J, Zhao S, Li N, Faheem M, Zhou T, Cai W, et al., 2019. Development and field test of an autonomous strawberry plug seeding transplanter for use in elevated cultivation. Appl Eng Agric 35: 1067-1078. https://doi.org/10.13031/aea.13236

Manes G, Anoop D, Arsdeep S, Mahal J, 2013. Feasibility of mechanical transplanter for paddy transplanting in Punjab. AMA Agric Mech As Afr Lat Am 44: 4-7.

Manilla RD, Shaw LN, 1987. A high-speed dibbling transplanter. T ASAE 30: 0904-0908. https://doi.org/10.13031/2013.30496

Min YB, Kang JK, Ryu CS, 2015. Development onion transplanter: analysis a transplanting locus on the type of transplanting devices for a vegetable transplanter. J Agr Life Sci 49(6): 289-294. https://doi.org/10.14397/jals.2015.49.6.289

Pareek S, Sagar NA, Sharma S, Kumar V, 2018. Onion (Allium cepa L.) In: Fruit and vegetable phytochemicals: Chemistry and human health, Vol. II, 2nd ed; Yahia EM (ed). John Wiley & Sons Ltd. https://doi.org/10.1002/9781119158042.ch58

Pérez-Ruiz M, Slaughter DC, 2021. Development of a precision 3-row synchronised transplanter. Biosyst Eng 206: 67-78. https://doi.org/10.1016/j.biosystemseng.2021.03.014

Rasool K, Ali M, Chowdhury M, Kwon HJ, Swe KM, Chung SO, 2021. Theoretical analysis of velocity, acceleration and torque calculation of a five-bar onion transplanting mechanism. IOP Conf Series: Earth Environ Sci 733(1): 012019. https://doi.org/10.1088/1755-1315/733/1/012019

Reza MN, Islam MN, Chowdhury M, Ali M, Islam S, Kiraga S, et al., 2021. Kinematic analysis of a gear-driven rotary planting mechanism for a six-row self-propelled onion transplanter. Machines 9(9): 183. https://doi.org/10.3390/machines9090183

Rohrer RA, Luck JD, Pitla SK, Hoy R, 2018. Evaluation of the accuracy of machine reported can data for engine torque and speed. T ASAE 61: 1547-1557. https://doi.org/10.13031/trans.12754

Shao Y, Liu Y, Xuan G, Hu Z, Han X, Wang Y, et al., 2019. Design and test of multifunctional vegetable transplanting machine. IFAC-Papers OnLine 52(30): 92-97. https://doi.org/10.1016/j.ifacol.2019.12.503

Srivastava AK, Goering CE, Rohrbach RP, Buckmaster DR, 2006. Engineering principles of agricultural machines, 2nd ed. Am Soc Agr Biol Eng, St. Joseph, MI, USA.

Tian S, Qiu L, Kondo N, Yuan T, 2010. Development of automatic transplanter for plug seedling. IFAC Proc Vol 43(26): 79-82. https://doi.org/10.3182/20101206-3-JP-3009.00013

Xue X, Li L, Xu C, Li E, Wang Y, 2020. Optimized design and experiment of a fully automated potted cotton seedling transplanting mechanism. Int J Agr Biol Eng 13: 111-117. https://doi.org/10.25165/j.ijabe.20201304.5317

Ye B, Zeng G, Deng B, Yang C, Liu J, Yu G, 2020. Design and tests of a rotary plug seedling pick-up mechanism for vegetable automatic transplanter. Int J Agr Biol Eng 13(3): 70-78. https://doi.org/10.25165/j.ijabe.20201303.5647

Yin DQ, Wang JZ, Zhang S, Zhang NY, Zhou ML, 2019. Optimized design and experiments of a rotary-extensive-type flowerpot seedling transplanting mechanism. Int J Agr Biol Eng 12: 45-50. https://doi.org/10.25165/j.ijabe.20191206.5188

Ying W, Jianneng C, Xiong Z, Xincheng S, 2015. Parameter optimization and experiment of planting mechanism driven by planetary non circular gears. T Chin Soc Agr Machin 46(9): 85-93 (in Chinese).

Zhao X, Shen M, Chen J, Dai L, 2014. Kinematic analysis and virtual experiment of rotary pick-up mechanism on cotton transplanter. T Chin Soc Agr Eng 30(8): 13-20.

Zhou M, Shan Y, Xue X, Yin D, 2020. Theoretical analysis and development of a mechanism with punching device for transplanting potted vegetable seedlings. Int J Agr Biol Eng 13: 85-92. https://doi.org/10.25165/j.ijabe.20201304.5404

Publicado
2023-07-12
Cómo citar
REZA, M. N., ALI, M., HABINEZA, E., KABIR, M. S., KABIR, M. S. N., LIM, S.-J., CHOI, I.-S., & CHUNG, S.-O. (2023). Analysis of operating speed and power consumption of a gear-driven rotary planting mechanism for a 12-kW six-row self-propelled onion transplanter. Spanish Journal of Agricultural Research, 21(3), e0207. https://doi.org/10.5424/sjar/2023213-20245
Sección
Ingeniería agraria