Estimación mediante programación genética de los patrones del suelo humectantes para el riego por goteo
Resumen
El riego por goteo está considerado como uno de los sistemas de riego más eficientes. El conocimiento del perímetro del bulbo mojado durante la fase de infiltración del agua es importante para el proyecto y manejo de sistemas de riego por goteo eficientes. Los modelos numéricos son una herramienta útil para analizar la evolución del bulbo mojado durante el riego a fin de explorar estrategias de manejo del riego por goteo que determinen el tiempo de riego y optimicen la eficiencia del uso del agua. En este trabajo se examinó el potencial de la programación de algoritmos genéticos (GP) para la simulación de la forma de bulbos mojados en riego por goteo. En primer lugar se ha simulado, con el programa de métodos numéricos HYDRUS 2D, el bulbo mojado en 12 texturas de suelo y diferentes caudales de goteros y tiempos de riego. A partir de las estimaciones de la profundidad y radio mojado como variables objetivo, se han considerado dos modelos GP diferentes. Por último, se ha analizado la capacidad de GP para simular la forma del bulbo mojado a partir de valores que no se utilizaron durante el proceso de entrenamiento. Los resultados obtenidos con GP, considerando el conjunto completo de operadores, se ajustaron, razonablemente, a los estimados con HYDRUS 2D, obteniéndose en la estimación del radio y la profundidad del bulbo mojado, coeficientes R2= 0,99 en ambos casos y valores de error cuadrático medio de 2,88 y 4,94 respectivamente. Los resultados experimentales de campo en un suelo franco arenoso con caudal del emisor de 4 L h-1 concordaron razonablemente con los de GP. Los resultados del estudio demuestran la utilidad de este método para estimar la forma del bulbo mojado en riego por goteo.Descargas
Citas
Abbasi F, Simunek J, Feyen J, Van Genuchten MTh, Shouse PJ, 2003a. Simultaneous inverse estimation of soil hydraulic and solute transport parameters from transient field experiments: Homogeneous soil. T ASAE 46(4): 1085-1095.
Abbasi F, Jacques D, Simunek J, Feyen J, Van Genuchten MTh, 2003b. Inverse estimation of the soil hydraulic and solute transport parameters from transient field experiments: Heterogeneous soil. T ASAE 46(4): 1097-1111.
Assouline S, 2002. The effects of micro drip and conventional drip irrigation on water distribution and uptake. Soil Sci Soc Am J 66: 1630-1636.
http://dx.doi.org/10.2136/sssaj2002.1630
Aytac A, Alp M, 2008. An application of artificial intelligence for rainfall-runoff modeling. J Earth Syst Sci 117(2): 144-155.
Ben-Asher J, Charach C, Zemel A, 1986. Infiltration and water extraction from trickle-irrigation source. The effective hemisphere model. Soil Sci Soc Am J 50: 882-887.
http://dx.doi.org/10.2136/sssaj1986.03615995005000040010x
Brandt A, Breslker E, Diner N, Ben-Asher J, Heller J, Goldberg D, 1971. Infiltration from a trickle source: I. Mathematical models. Soil Sci Soc Am J 35: 683-689.
http://dx.doi.org/10.2136/sssaj1971.03615995003500050018x
Bresler E, 1978. Analysis of trickle irrigation with application to design problems. Irrigation Sci 1: 3-17.
http://dx.doi.org/10.1007/BF00269003
Bufon VB, Lascano RJ, Bednarz C, Booker JD, Gitz DC, 2012. Soil water content on drip irrigated cotton: comparison of measured and simulated values obtained with the Hydrus 2-D model. Irrigation Sci 30: 259-273.
http://dx.doi.org/10.1007/s00271-011-0279-z
Camp CR, 1998. Subsurface drip irrigation: a review. T ASAE 41: 1353-1367.
Cote CM, Bristow KL, Charlesworth PB, Cook FJ, Thorburn PJ, 2003. Analysis of soil wetting and solute transport in subsurface trickle irrigation. Irrigation Sci 22: 143-156.
http://dx.doi.org/10.1007/s00271-003-0080-8
Darusman KAH, Stone LR, Lamm FR, 1997. Water flux below the root zone vs. drip-line spacing in drip irrigated corn. Soil Sci Soc Am Proc 61: 1755-1760.
Ferreira C, 2001a. Gene expression programming in problem solving. 6th Online World Conf on Soft Computing in Industrial Applications (invited tutorial), Springer, Berlin (Germany). pp: 1-22.
Ferreira C, 2001b. Gene expression programming: A new adaptive algorithm for solving problems. Complex Syst 13(2): 87-129.
Ferreira C, 2006. Gene expression programming: mathematical modeling by an artificial intelligence. Springer, Berlin, 478 pp.
Fuchs M, 1998. Crossover versus mutation: An empirical and theoretical case study. Proc. 3rd Ann Conf on Genetic Programming, Morgan- Kauffman, San Mateo, CA, (USA), Jul 22-25. pp: 78-85.
Goldberg DE, 1989. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA, USA.
Healy RW, 1987. Simulation of trickle-irrigation, an extension to U.S. Geological Survey's computer program Vs 2D. US Geological Survey Water Resour Invest 87-4086, US Govt Washington, DC.
Hinnell AC, Lazarovitch N, Furman A, Poulton M, Warrick AW, 2010. Neuro-Drip: estimation of subsurface wetting patterns for drip irrigation using neural networks. Irrigation Sci 28: 535-544.
http://dx.doi.org/10.1007/s00271-010-0214-8
Kandelous MM, Simunek J, 2010. Comparison of numerical, analytical, and empirical models to estimate wetting patterns for surface and subsurface drip irrigation. Irrigation Sci 28: 435-444.
http://dx.doi.org/10.1007/s00271-009-0205-9
Kisi O, Guven A, 2010. Evapotranspiration modeling using linear genetic programming technique. J Irrig Drain Eng-ASCE 136(10): 715-723.
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000244
Koza JR, 1992. Genetic programming, on the programming of computers by means of natural selection. MIT Press, Cambridge, MA, USA.
PMCid:1130644
Kumar DN, Raju KS, Ashok B, 2006. Optimal reservoir operation for irrigation of multiple crops using genetic algorithms. J Irrig Drain Eng-ASCE 132(2): 123-129.
http://dx.doi.org/10.1061/(ASCE)0733-9437(2006)132:2(123)
Lubana PPS, Narda NK, 2001. Soil and water modelling. Soil water dynamics under trickle emitters-a review. J Agr Eng Res 78: 217-232.
http://dx.doi.org/10.1006/jaer.2000.0650
Luke S, Spector L, 1998. A revised comparison of crossover and mutation in genetic programming. Proc 3rd Ann Conf on Genetic Programming, Morgan-Kauffman, Madison, San Mateo, CA, USA.
Mmolawa K, Or D, 2000a. Water and solute dynamics under a drip irrigated crop: experiments and analytical model. T ASAE 43: 1597-1608.
Mmolawa K, Or D, 2000b. Root zone solute dynamics under drip irrigation: A review. Plant Soil 222: 163-190.
http://dx.doi.org/10.1023/A:1004756832038
Moradi-Jalal M, Rodin SI, Marino MA, 2004. Use of genetic algorithm in optimization of irrigation pumping stations. J Irrig Drain Eng-ASCE 130(5): 357-365.
http://dx.doi.org/10.1061/(ASCE)0733-9437(2004)130:5(357)
Mualem Y, 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3): 513-522.
http://dx.doi.org/10.1029/WR012i003p00513
Or D, 1995. Statistical analysis of soil water monitoring for drip irrigation management in heterogeneous soils. Soil Sci Soc Am J 59: 1222-1233.
http://dx.doi.org/10.2136/sssaj1995.03615995005900050003x
Reca J, Martinez J, 2006. Genetic algorithms for the design of looped irrigation water distribution networks. Water Resour Res 42(5): 1-9.
http://dx.doi.org/10.1029/2005WR004383
Simunek J, Van Genuchten MT, Senja M, 2006. The HYDRUS software package for simulating two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Technical manual, Vers 1.0. PC Progress, Prague, Czech Republic.
PMCid:2014688
Skaggs TH, Trout TJ, Simunek J, Shouse PJ, 2004. Comparison of Hydrus-2D simulations of drip irrigation with experimental observations. J Irrig Drain Eng-ASCE 130(4): 304-310.
http://dx.doi.org/10.1061/(ASCE)0733-9437(2004)130:4(304)
Smith RE, Warrick AW, 2007. Soil water relationships- design and operation of farm irrigation systems. American Society of Agricultural and Biological Engineers (ASABE), Ann Arbor (USA), pp: 120-159.
PMCid:2690923
Steele DD, Greenland RG, Gregor BL, 1996. Subsurface drip irrigation systems for specialty crop production in North Dakota. Appl Eng Agr 12(6): 671-679.
Taghavi SA, Marino Miguel A, Rolston DE, 1984. Infiltration from trickle-irrigation source. J Irrig Drain Eng-ASCE 10: 331-341.
http://dx.doi.org/10.1061/(ASCE)0733-9437(1984)110:4(331)
Ustoorikar K, Deo MC, 2008. Filling up gaps in wave data with genetic programming. Mar Struct 21: 177-195.
http://dx.doi.org/10.1016/j.marstruc.2007.12.001
Van Genuchten MTh, 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44: 892-898.
http://dx.doi.org/10.2136/sssaj1980.03615995004400050002x
Vrugt JA, Van Wijk MT, Hopmans JW, Simunek J, 2001. One-, two-, three dimensional root water uptake functions for transient modeling. Water Resour Res 37(10): 2457-2470.
http://dx.doi.org/10.1029/2000WR000027
Warrick AW, 1974. Time-dependent linearized infiltration. I. Point sources. Soil Sci Soc Am Proc 38: 383-386.
http://dx.doi.org/10.2136/sssaj1974.03615995003800030008x
Wooding RA, 1968. Steady infiltration from a shallow circular pond. Water Resour Res 4: 1259-1273.
http://dx.doi.org/10.1029/WR004i006p01259
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.