Evaluación de la calidad del suelo tras la implantación de cubiertas permanentes en viñedos de zonas semiáridas. Materia orgánica y propiedades físicas y biológicas del suelo
Resumen
El establecimiento de cubiertas vegetales permanentes (PGC) en viñedos de zonas semiáridas, con manejo tradicional de suelo desnudo mediante laboreo y aplicación de herbicidas, es controvertido, porque tiene ventajas agronómicas y ambientales, pero puede inducir cambios negativos en la calidad física del suelo. Los objetivos de este trabajo fueron: (i) avanzar en el conocimiento del efecto de la implantación de PGC en la calidad física y biológica del suelo, e (ii) identificar los indicadores de calidad del suelo más apropiados para suelos calizos de viñedo en una zona semiárida. Se determinaron propiedades físicas y biológicas clave en un Calcisol Cámbico con PGC de diferente edad (1 y 5 años), con un control manejado convencionalmente. El análisis de correlaciones mostró una relación directa entre la estabilidad estructural (WSA), la capacidad de retención de agua útil (AWC), la biomasa microbiana y las actividades enzimáticas del suelo bajo PGC. El contenido de C orgánico total (SOC) y lábil (POM-C) estuvo también correlacionado con los parámetros microbianos. Los indicadores de calidad del suelo más sensibles se identificaron mediante análisis factorial por componentes principales (PCA). La actividad de lombrices, AWC, WSA, SOC y POM-C mostraron el mayor peso en los dos factores obtenidos con PCA, por lo que estas propiedades pueden considerarse indicadores adecuados de la calidad del suelo en este agrosistema. Estos resultados indican que tanto los atributos físicos como biológicos del suelo son diferentes bajo PGC, y necesitan ser evaluados al estudiar las consecuencias de su introducción en suelos de viñedo.Descargas
Citas
Álvaro-Fuentes J, Arrúe JL, Cantero-Martínez C, López MV, 2008. Aggregate breakdown during tillage in a Mediterranean loamy soil. Soil Till Res 101: 62-68.
http://dx.doi.org/10.1016/j.still.2008.06.004
Amador JA, Görres JH, 2007. Microbiological characterization of the structures built by earthworms and ants in an agricultural field. Soil Biol Biochem 39: 2070-2077.
http://dx.doi.org/10.1016/j.soilbio.2007.03.010
Andrews SS, Carroll CR, 2001. Designing a soil quality assessment tool for sustainable agroecosystem management. Ecol Appl 11: 1573-1585.
http://dx.doi.org/10.1890/1051-0761(2001)011[1573:DASQAT]2.0.CO;2
Andrews SS, Mitchell JP, Mancincelli R, Karlen DL, Hartz TH, Horwath WR, Pettygrove S, Scow KM, Munk D, 2002. On-farm assessment of soil quality in California's Central Valley. Agronomy J 94: 12-23.
http://dx.doi.org/10.2134/agronj2002.0012
Andrews SS, Karlen DL, Cambardella CA, 2004. The soil management assessment framework: A quantitative soil quality evaluation method. Soil Sci Soc Am J 68: 1945-1962.
http://dx.doi.org/10.2136/sssaj2004.1945
Bescansa P, Imaz MJ, Virto I, Enrique A, Hoogmoed WB, 2006. Soil water retention capacity as affected by tillage systems under semiarid conditions in Navarra (NE Spain). Soil Till Res 87: 19-27.
http://dx.doi.org/10.1016/j.still.2005.02.028
Brejda JJ, Moorman TB, Karlen DL, Dao TH, 2000. Identification of regional soil quality factors and indicators: I Central and southern high plains. Soil Sci Soc Am J 64: 2115-2124.
http://dx.doi.org/10.2136/sssaj2000.6462115x
Cambardella CA, Elliot ET, 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 56: 777-783.
http://dx.doi.org/10.2136/sssaj1992.03615995005600030017x
Carter MR, 2002. Quality, critical limits and standardization. In: Encyclopaedia of soil science (Lal R, ed). Marcel Dekker Inc., NY. pp: 1062-1065.
PMid:12359264
Celette F, Gaudin R, Gary C, 2008. Spatial and temporal changes to the water regime of a Mediterranean vineyard due to the adoption of cover cropping. Eur J Agron 29: 153-162.
http://dx.doi.org/10.1016/j.eja.2008.04.007
Dick RP, Breackwell DP, Tuco RF, 1996. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Methods for assessing soil quality (Doran JW & Jones AJ, eds.) SSSA Spec publ No. 49. Madison, WI, USA. pp: 247-271.
Dirksen C, 1999. Soil physics measurements. Catena Verlag, Reiskirchen, Germany.
Doran JW, Parkin TB, 1994. Defining and assessing soil quality. In: defining soil quality for a sustainable environment (Doran JW, Coleman DC, Bezdicek DF & Stewart BA, eds). SSSA Spec Publ No 35. Madison, WI, USA. pp: 3-21.
Ehlers W, Kopke U, Hesse F, Böhm W, 1983. Penetration resistance and root-growth of oats in tilled and untilled loess soil. Soil Till Res 3: 261-275.
http://dx.doi.org/10.1016/0167-1987(83)90027-2
Epelde L, Becerril JM, Hernández-Allica J, Barrutia O, Garbisu C, 2008. Functional diversity as an indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction. Appl Soil Ecol 39: 299-310.
http://dx.doi.org/10.1016/j.apsoil.2008.01.005
FAO, 1998. World reference base for soil resources. Food and Agriculture Organization of the United Nations, Rome.
Fernández-Ugalde O, Virto I, Imaz MJ, Bescansa P, Enrique A, Karlen D, 2009. No-tillage improvement of soil physical quality in calcareous, degradation-prone, semiarid soils. Soil Till Res 106: 29-35.
http://dx.doi.org/10.1016/j.still.2009.09.012
Fernández-Ugalde O, Virto I, Barre P, Gartzia-Bengoetxea N, Enrique A, Imaz, MJ, Bescansa P, 2011. Effect of carbonates on the hierarchical model of aggregation in calcareous semi-arid Mediterranean soils. Geoderma 164: 203-214.
http://dx.doi.org/10.1016/j.geoderma.2011.06.008
Ferrini F, Mattii GB, Storchi P, 1996. Effect of various ground covers on berry and must characteristic of 'Sangiovese' wine grape in the Brunello di Montalcino area. Acta Hortic 427: 29-35.
Gobierno de Navarra, 2008. Reglamento de la Denominación de Origen "Navarra" y de su Consejo Regulador. Orden Foral 376/2008. Consejería de Desarrollo Rural y Medio Ambiente, Pamplona, Spain.
Goh TB, Arnaud RJ, Mermut AR, 1993. Carbonates. In: Soil sampling and methods of analysis (Carter MR, ed.) Can Soc Soil Sci & Lewis Publ, Boca Raton, FL, USA. pp: 177-186.
Govaerts B, Sayre KD, Deckers J, 2006. A minimum data set for soil quality assessment of wheat and maize in the highlands of Mexico. Soil Till Res 87: 163-174.
http://dx.doi.org/10.1016/j.still.2005.03.005
Herrick J, 2000. Soil quality: an indicator of sustainable land management? Appl Soil Ecol 15: 75-83.
http://dx.doi.org/10.1016/S0929-1393(00)00073-1
Imaz MJ, Virto I, Bescansa P, Enrique A, Fernandez-Ugalde O, Karlen DA, 2010. Tillage and residue management effects on semi-arid Mediterranean soil quality. Soil Till Res 107: 17-25.
http://dx.doi.org/10.1016/j.still.2010.02.003
Karlen DL, Stott DE, 1994. A framework for evaluating physical end chemical indicators of soil quality. In: Defining soil quality for a sustainable environment (Doran JW, Coleman DC, Bezdicek DF & Stewart BA, eds). SSSA Spec Publ No 35. Madison, WI, USA. pp: 53-72.
Karlen DL, Ditzler CA, Andrews SS, 2003. Soil quality: why and how? Geoderma 114: 145–156.
http://dx.doi.org/10.1016/S0016-7061(03)00039-9
Klik A, Rosner J, Loiskandl W, 1998. Effects of temporary and permanent soil cover on grape yield and soil chemical and physical properties. J Soil Water Cons 53: 249-253.
Lagomarsino A, Grego S, Marhan S, Moscatelli MC, Kandeler E, 2009a. Soil management modifies micro-scale abundance and function of soil microorganisms in a Mediterranean ecosystem. Eur J Soil Sci 60: 2-12.
http://dx.doi.org/10.1111/j.1365-2389.2008.01113.x
Lagomarsino A, Moscatelli MC, Di Tizio A, Mancinelli R, Grego S, Marinari S, 2009b. Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a Mediterranean environment. Ecol Ind 9: 518-527.
http://dx.doi.org/10.1016/j.ecolind.2008.07.003
Lampurlanés J, Cantero-Martínez C, 2006. Hydraulic conductivity, residue cover and soil surface roughness under different tillage systems in semiarid conditions. Soil Till Res 85: 13-26.
http://dx.doi.org/10.1016/j.still.2004.11.006
Le Bissonnais Y, Blavet D, De Noni G, Laurent JY,Asseline J, Chenu C, 2007. Erodibility of Mediterranean vineyard soils, relevant aggregate stability methods and significant soil variables. Eur J Soil Sci 58: 188-195.
http://dx.doi.org/10.1111/j.1365-2389.2006.00823.x
MARM, 2009. Anuario de Estadística 2008. Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid, Spain.
Mijangos I, Garbisu C, 2010. Consequences of soil sampling depth during the assessment of the effects of tillage and fertilization on soil quality: a common oversight. Soil Till Res 109: 169-173.
http://dx.doi.org/10.1016/j.still.2010.05.001
Mijangos I, Becerril JM, Albizu I, Epelde L, Garbisu C, 2009. Effects of glyphosate on rhizosphere soil microbial communities under two different plant compositions by cultivation-dependent and -independent methodologies. Soil Biol Biochem 41: 505-513.
http://dx.doi.org/10.1016/j.soilbio.2008.12.009
Monteiro A, Lopes CM, 2007. Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal. Agr Ecosys Environ 121: 336–342.
http://dx.doi.org/10.1016/j.agee.2006.11.016
Moreno F, Pelegrín F, Fernández JE, Murillo JM, 1997. Soil physical properties, water depletion and crop development under traditional and conservation tillage in southern Spain. Soil Till Res 41: 25-42.
http://dx.doi.org/10.1016/S0167-1987(96)01083-5
Moreno B, Garcia-Rodriguez S, Cañizares R, Castro J, Benítez E, 2009. Rainfed olive farming in south-eastern Spain: Long-term effect of soil management on biological indicators of soil quality. Agr Ecosys Environ 131: 333-339.
http://dx.doi.org/10.1016/j.agee.2009.02.011
Morlat R, Jacquet A, 2003. Grapevine root system and soil characteristics in a vineyard maintained long-term with or without inter-row sward. Am J Enol Viticult 54: 1-7.
Nannipieri P, Kandeler E, Ruggiero P, 2002. Enzyme activities and microbiological and biochemical processes in soil. In: Enzymes in the environment, activity, ecology, and application (Burns RG & Dick RP, eds.). Dekker Marcel, NY. pp: 1-33.
http://dx.doi.org/10.1201/9780203904039.ch1
Papadakis J, 1975. Climates of the world and their potentialities. Papadakis, Buenos Aires.
PMCid:2130373
Peregrina F, Larrieta C, Ibáñez S, García-Escudero E, 2010. Labile organic matter, aggregates and stratification ratios in a semiarid vineyard with cover crops. Soil Sci Soc Am J 74: 2120-2130.
http://dx.doi.org/10.2136/sssaj2010.0081
Peres G, Cluzeau D, Curmi P, Hallaire V, 1998. Earthworm activity and soil structure changes due to organic enrichments in vineyard systems. Biol Fert Soils 27: 417-424.
http://dx.doi.org/10.1007/s003740050452
Quiquerez A, Brenot J, Garcia JC, Petit C, 2008. Soil degradation caused by a high-intensity rainfall event, Implications for medium-term soil sustainability in Burgundian vineyards. Catena 73: 89-97.
http://dx.doi.org/10.1016/j.catena.2007.09.007
Raich JW, Schlesinger WH, 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44: 81-99.
http://dx.doi.org/10.1034/j.1600-0889.1992.t01-1-00001.x
Ramos MC, Martínez-Casasnovas JA, 2006. Nutrient losses by runoff in vineyards of the Mediterranean Alt Penedès region (NE Spain). Agr Ecosyst Environ 113: 356-363.
http://dx.doi.org/10.1016/j.agee.2005.10.009
Ripoche A, Metay A, Celette F, Gary C, 2011. Changing the soil surface management in vineyards: immediate and delayed effects on the growth and yield of grapevine. Plant Soil 339: 259-271.
http://dx.doi.org/10.1007/s11104-010-0573-1
Ros M, Pascual JA, Hernandez MT, 2009. Long-term effects of devegetation on composition and activities (including transcription) of fungal communities of a semi-arid soil. Biol Fert Soils 45: 435-441.
http://dx.doi.org/10.1007/s00374-008-0348-5
Ruiz-Colmenero M, Bienes R, Marques MJ, 2011. Soil and water conservation dilemmas associated with the use of green cover in steep vineyards. Soil Till Res 177: 211-223.
http://dx.doi.org/10.1016/j.still.2011.10.004
Shaw LJ, Burns, RG 2008. Enzyme activity profiles and soil quality. In: Microbiological methods for assessing soil quality (Bloem J, Hopkins DW, Benedetti A, eds.). CAB Int, Cambridge, MA, USA. pp: 158-182.
Sheldrick BH, Wang C, 1993. Particle size distribution. In: Soil sampling and methods of analysis (Carter MR, ed.). Can Soc Soil Sci & Lewis Publ, Boca Raton, FL, USA. pp: 499-512.
Shepard HL, 2006. Quantification of erosion rates for various vineyard management practices. Am J Enol Viticult 57: 387A.
Shukla MK, Lal R, Ebinger M, 2006. Determining soil quality indicators by factor analysis. Soil Till Res 87: 194-204.
http://dx.doi.org/10.1016/j.still.2005.03.011
SPSS, 2010. Statistical software SPSS 17.0. SPSS Inc., Chicago, IL, USA.
Steenwerth K, Belina KM, 2008a. Cover crops and cultivation. Impacts on soil N dynamics and microbiological function in a Mediterranean vineyard agroecosystem. Appl Soil Ecol 40: 359-369.
http://dx.doi.org/10.1016/j.apsoil.2008.06.006
Steenwerth K, Belina KM, 2008b. Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem. Appl Soil Ecol 40: 370-380.
http://dx.doi.org/10.1016/j.apsoil.2008.06.004
Taylor JP, Wilson B, Mills MS, Burns RG, 2002. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol Biochem 34: 387-401.
http://dx.doi.org/10.1016/S0038-0717(01)00199-7
Tebrügge F, Düring RA, 1999. Reducing tillage intensity- a review of results from long-term study in Germany. Soil Till Res 53: 15-28.
http://dx.doi.org/10.1016/S0167-1987(99)00073-2
Tesic D, Keller M, Hutton RJ, 2007. Influence of vineyard floor management practices on grapevine vegetative growth, yield, and fruit composition. Am J Enol Viticult 58: 1-11.
Tiessen H, Moir JO, 1993. Total and organic carbon. Soil sampling and methods of analysis (Carter MR, ed.) Can Soc Soil Sci & Lewis Publ, Boca Raton, FL, USA. pp: 187-200.
UNESCO, 1979. Map of the world distribution of arid regions. Explanatory note. MAB Technical Notes 7. Unesco, Paris, 53 pp.
Vance ED, Brookes PC, Jenkinson DS, 1987. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19: 703-707.
http://dx.doi.org/10.1016/0038-0717(87)90052-6
Virto I, Bescansa P, Imaz MJ, Enrique A, Hoogmoed, WB, 2007. Burning crop residues under no-till in semi arid land, Northern Spain. Effects on soil organic matter, aggregation and earthworm populations. Aust J Soil Res 45: 414-421.
http://dx.doi.org/10.1071/SR07021
Whitelaw-Weckert MA, Rahman L, Hutton RJ, Coombes N, 2007. Permanent swards increase soil microbial counts in two Australian vineyards. Appl Soil Ecol 36: 224-232.
http://dx.doi.org/10.1016/j.apsoil.2007.03.003
Zak JC, Willing MR, Moorhead DL, Wildman HG, 1994. Functional diversity of microbial communities, a quantitative approach. Soil Biol Biochem 26: 1101-1108.
http://dx.doi.org/10.1016/0038-0717(94)90131-7
Zornoza R, Mataix-Solera J, Guerrero C, Arcenegui V, Mayoral AM, Morales J, Mataix-Beneyto J, 2007. Soil properties under natural forest in the Alicante Province of Spain. Geoderma 142: 334-341.
http://dx.doi.org/10.1016/j.geoderma.2007.09.002
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.