Effectiveness of mixtures of vivianite and organic materials in preventing iron chlorosis in strawberry

  • A. de Santiago Centro de Investigación Finca La Orden-Valdesequera (Junta de Extremadura)
  • E. Carmona Dpto. Ciencias Agroforestales, ETSIA, Universidad de Sevilla, Ctra. Utrera km 1, 41013 Sevilla
  • J. M. Quintero Dpto. Ciencias Agroforestales, ETSIA, Universidad de Sevilla, Ctra. Utrera km 1, 41013 Sevilla
  • A. Delgado Dpto. Ciencias Agroforestales, ETSIA, Universidad de Sevilla, Ctra. Utrera km 1, 41013 Sevilla
Palabras clave: deficiencia de Fe, fertilizantes de hierro, corcho compostado, sustancias húmicas

Resumen

La aplicación de sales de hierro con materia orgánica de diferentes fuentes ha demostrado ser efectiva en la prevención de la clorosis férrica. El principal objetivo de este trabajo fue estudiar la efectividad de distintas fuentes de Fe formadas a partir de la mezcla de sustancias húmicas o compost con vivianita, en la prevención de este desorden nutricional en fresa (Fragaria x ananassa cv Camarosa). Para ello, se dispuso en un invernadero un experimento diseñado en bloques al azar, con 4 repeticiones (3 plantas por repetición) y un solo factor (la fuente de Fe), usando un medio calcáreo como soporte para las plantas. Las fuentes de Fe estudiadas fueron: (i) testigo sin Fe, (ii) testigo con una fuente efectiva de Fe en medios calcáreos (EDDHA-Fe, 0.1g kg-1), (iii) vivianita (1 g kg-1 medio, dosis recomendada), (iv) vivianita (1 g kg-1) + sustancias húmicas (–SH– 0.06 g kg-1), (v) vivianita (0.5 g kg-1) + SH (0.06 g kg-1) y (vi) una mezcla de corcho compostado y vivianita en una relación 6:1 en peso (CORVIV) aplicada a una dosis de 6 g kg-1 medio. Todas las fuentes de Fe fueron efectivas incrementando las medidas de clorofila SPAD cuando se compararon con el testigo sin Fe. Los tratamientos basados en vivianita no produjeron diferencias significativas respecto a aquellos obtenidos con EDDHA-Fe. Sin embargo, solo el CORVIV no mostró diferencias significativas con respecto al quelato de Fe en cuanto a la producción de materia seca (MS), el área foliar y el contenido en Fe total presente en la parte aérea. Las sustancias húmicas y la vivianita aplicadas en la dosis recomendada (1 g kg–1) incrementaron la producción de MS en las plantas con respecto a la vivianita sin sustancias húmicas. Además la vivianita aplicada sin mezclar con materia orgánica resultó comportarse de forma similar a la dosis inferior de vivianita (0.5 g kg–1) aplicada junto con sustancias húmicas. Se podría concluir que las fuentes de materia orgánica estudiadas incrementaron la eficiencia de la vivianita en la prevención de la clorosis en fresa, especialmente cuando la vivianita se enriqueció con compost de corcho, siendo tan efectiva como el EDDHA-Fe.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

A. de Santiago, Centro de Investigación Finca La Orden-Valdesequera (Junta de Extremadura)
Dra en biología, responsable del grupo de Edafología del departamento de Cultivos Extensivos

Citas

Abadía J, Vázquez S, Rellán-Álvarez R, El Jendoubi H, Abadía A, Álvarez-Fernandez, López-Millán AF, 2011. Towards a knowledge-based correction of iron chlorosis. Plant Physiol Biochem 49(5): 471–482.
http://dx.doi.org/10.1016/j.plaphy.2011.01.026
PMid:21349731  

Almaliotis D, Velemis D, Bladenopoulou S, Karapetsas N, 2002. Leaf nutrient levels of strawberries (cv. Tudla) in relation to crop yield. ISHS Acta Hortic 567: 447-450. 

Bar-ness E, Chen Y, 1991. Manure and peat based iron-organo complexes. Plant Soil 130: 35–43.
http://dx.doi.org/10.1007/BF00011853 

Bavaresco L, van Zeller de Macedo MI, Gonçalves B, Civardi S, Gatti M, Ferrari F, 2010. Effects of traditional and new methods on overcoming lime-induced chlorosis of grapevine. Am J Enol Vitic 61(2): 186–190. 

Bocanegra MP, Lobartini JC, Orioli GA, 2006. Plant uptake of iron chelated by humic acids of different molecular weights. Commun Soil Sci Plant Anal 37: 239–248.
http://dx.doi.org/10.1080/00103620500408779 

Caballero R, Ordovás J, Pajuelo P, Carmona E, Delgado A, 2007. Iron chlorosis in gerber as related to properties of various types of compost used as growing media. Commun Soil Sci Plant Anal 38: 2357–2369.
http://dx.doi.org/10.1080/00103620701588494 

Caballero R, Ordovás J, Pajuelo P, Carmona E, Delgado A, 2009. Evaluation and correction of nutrient availability to Gerbera jamesonii H. Bolus in various compost-based growing media. Sci Hortic 122: 244–250.
http://dx.doi.org/10.1016/j.scienta.2009.05.010 

CAP, 2007. Análisis de los ingresos del sector fresero de Huelva en la campaña 2006/2007. Huelva, Consejería de Agricultura y Pesca, Junta de Andalucía. 

Chaney RL, Brown JC, Tiffin LO, 1972. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol 50: 208–213.
http://dx.doi.org/10.1104/pp.50.2.208
PMid:16658143 PMCid:366111 

Chatterjee C, Gopal R, Dube BK, 2006. Impact of iron stress on biomass, yield, metabolism and quality of potato (Solanum tuberosum L.). Sci Hortic 108: 1–6.
http://dx.doi.org/10.1016/j.scienta.2006.01.004 

Chen J, Gu B, Royer RA, Burgos WD, 2003. The roles of natural organic matter in chemical and microbial reduction of ferric iron. Sci Total Environ 307: 167–178.
http://dx.doi.org/10.1016/S0048-9697(02)00538-7 

Chen Y, Navrot J, Barak P, 1982. Remedy of lime-induced chlorosis with iron-enriched Muck. J Plant Nutr 5(4): 927–940.
http://dx.doi.org/10.1080/01904168209363023 

de Santiago A, Delgado A, 2006. Predicting iron chlorosis of lupin in calcareous Spanish soils from iron extracts. Soil Sci Soc Am J 70: 1945–1950.
http://dx.doi.org/10.2136/sssaj2005.0343 

de Santiago A, Delgado A, 2007. Effects of humic substances on iron nutrition of lupin. Biol Fertil Soils 43: 829–836.
http://dx.doi.org/10.1007/s00374-007-0191-0 

de Santiago A, Delgado A, 2010. Interaction between beet vinasse and iron fertilisers in the prevention of iron deficiency in lupins. J Sci Food Agric 90: 2188–2194.
http://dx.doi.org/10.1002/jsfa.4068
PMid:20607794  

de Santiago A, Quintero JM, Carmona E, Delgado A, 2008a. Humic substances increase the efectiveness of iron sulfate and vivianite preventing iron chlorosis in white lupin. Biol Fertil Soils 44: 875–883.
http://dx.doi.org/10.1007/s00374-008-0272-8 

de Santiago A, Díaz I, del Campillo MC, Torrent J, Delgado A, 2008b. Predicting the incidence of iron deficiency chlorosis from hydroxylamine-extractable iron in soil. Soil Sci Soc Am J 72(5):1493–1499.
http://dx.doi.org/10.2136/sssaj2007.0366 

Delgado A, Madrid A, Kassem S, Andreu L, del Campillo MC, 2002. Phosphorus fertilizer recovery from calcareous soils amended with humic and fulvic acids. Plant Soil 245(2): 277–286.
http://dx.doi.org/10.1023/A:1020445710584 

Díaz I, Barrón V, del Campillo MC, Torrent J, 2010. Testing the ability of vivianite to prevent iron deficiency in pot-grown grapevine. Sci Hortic 123: 464–468.
http://dx.doi.org/10.1016/j.scienta.2009.11.006 

Erdal Ü, Kepenek K, Kizigozg Ü, 2004. Effect of foliar iron applications at different growth stages on iron and some nutrient concentrations in strawberry cultivars. Turk J Agric For 28: 421–427. 

Eynard A, del Campillo MC, Barrón V, Torrent J, 1992. Use of vivianite (Fe3(PO4)2•8H2O) to prevent iron chlorosis in calcareous soils. Fert Res 3: 61–67.
http://dx.doi.org/10.1007/BF01064228 

Gogorcena Y, Abadía J, Abadía A, 2004. A new technique for screening iron-efficient genotypes in peach rootstocks: elicitation of root ferric chelate reductase by manipulation of external iron concentrations. J Plant Nutr 27: 1–15.
http://dx.doi.org/10.1081/PLN-200026406 

Hancock JF, 1999. Strawberries. Crop Production Science in Horticulture Series, No. 11. CABI Publishing, Wallingford, UK. 237 pp. 

Heitholt JJ, Sloan JJ, MacKown CT, Cabrera RI, 2003. Soybean growth on a calcareous soil as affected by three iron sources. J Plant Nutr 26(4): 935–948.
http://dx.doi.org/10.1081/PLN-120018575 

Iglesias I, Dalmau R, Marcé X, del Campillo MC, Barrón V, Torrent J, 2000. Fertilization with iron (II)-phosphate effectively prevents iron chlorosis in pear trees (Pyrus communis L.). Acta Hortic 511: 65–72. 

Johnson GV, Lopez A., La Valle Foster N, 2002. Reduction and transport of Fe from siderophores. Plant Soil 241(1): 27–33.
http://dx.doi.org/10.1023/A:1016007708926 

Kafkas E, Silverbush M, Paydas S, 2007. Physiological characterization of strawberry cultivars with differential susceptibility to iron deficiency. W J Agric Sci 3(2):196–203. 

Karp K, Starast M, Kaldmäe H, 2002. Influence of the age of plants and foliar fertilization on the yield of strawberry cultivar jonsok under plastic mulch. ISHS Acta Hortic 567: 459-462. 

Lindsay WL, Norvell WA, 1978. Development of DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42: 421–428.
http://dx.doi.org/10.2136/sssaj1978.03615995004200030009x 

Lucena JJ, Chaney RL, 2006. Root ferric chelate reductase and iron concentration in xylem sap as indexes of the iron uptake by green stressed cucumber plants from synthetic iron chelates. J Plant Nutr 29: 423–439.
http://dx.doi.org/10.1080/01904160500524886 

Mathers AC, Thomas JD, Stewart BA, Herring JE, 1980. Manure and inorganic fertilizer effect on sorghum and sunflower growth on iron-deficient soil. Agron J 72: 1025–1029.
http://dx.doi.org/10.2134/agronj1980.00021962007200060038x 

Medina JJ, Miranda L, López-Aranda JM, Soria C, 2007. Situación actual de las variedades en el sector fresero de Huelva. Vida Rural 245: 67–69. 

Murphy J, Riley JR, 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27: 31–36.
http://dx.doi.org/10.1016/S0003-2670(00)88444-5 

Orera I, Rodríguez-Castrillón JA, Moldovan M, García-Alonso JI, Abadía A, Abadía J, Álvarez-Fernández A, 2010. Using a dual-stable isotope tracer method to study the uptake, xylem transport and distribution of Fe and its chelating agent from stereoisomers of a xenobiotic Fe(III)-chelate used as fertilizer in Fe-deficient Strategy I plants. Metallomics 2: 646–657.
http://dx.doi.org/10.1039/c0mt00018c
PMid:21072356  

Pédrot M, Le Boudec A, Davranche M, Dia A, Henin O, 2011. How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction? J Colloid and Interf Sci 359: 75–85.
http://dx.doi.org/10.1016/j.jcis.2011.03.067
PMid:21482426  

Pestana M, Domingos I, Gama F, Dandlen S, Miguel MG, Castro J, 2011. Strawberry recovers from iron chlorosis after foliar application of a grass-clipping extract. J Plant Nutr Soil Sci 174: 473–479.
http://dx.doi.org/10.1002/jpln.201000215 

Pierre JL, Fontecave R, Crichton R, 2006. Chemistry for an essential biological process: the reduction of ferric iron. Biometals 15: 341–346.
http://dx.doi.org/10.1023/A:1020259021641 

Pinton R, Cesco S, De Nobili M, Santi S, Varanini Z, 1998. Water- and pyrophosphate-extractable humic substances fractions as a source of iron for Fe-deficient cucumber plants. Biol Fertil Soils 26: 23–27.
http://dx.doi.org/10.1007/s003740050337 

Pinton R, Cesco S, Santi S, Agnolon F, Varanini Z, 1999. Water-extractable humic substances enhance iron deficiency responses by Fe-deficient cucumber plants. Plant Soil 210: 145–157.
http://dx.doi.org/10.1023/A:1004329513498 

Rombolà AD, Toselli M, Carpintero JM, Quartieri M, Torrent J, Marangoni B, 2003. Prevention of lime-induced iron-deficiency chlorosis in kiwifruit (Actinidia deliciosa) through soil application of synthetic vivianite. J Plant Nutr 26: 2031–2041.
http://dx.doi.org/10.1081/PLN-120024262 

Rosado R, del Campillo MC, Martínez MA, Barrón V, Torrent J, 2002. Long-term effectiveness of vivianite in reducing iron chlorosis in olive trees. Plant Soil 241: 139–144.
http://dx.doi.org/10.1023/A:1016058713291 

Sakal R, Singh BP, Singh AP, 1982. Iron nutrition of rice and maize as influenced by iron carriers and compost application in calcareous soil. J Indian Soc Soil Sci 30: 190–193. 

Schmidt W, Steinbach S, 2000. Sensing iron- A whole plant approach. Ann Bot 86: 589–593.
http://dx.doi.org/10.1006/anbo.2000.1223 

Schwertmann U, Wagner F, Knicker H, 2005. Ferrihydrite-humic associations: magnetic hyperfine interactions. Soil Sci Soc Am J 69: 1009–1015.
http://dx.doi.org/10.2136/sssaj2004.0274 

Sims JT, 2000. Soil fertility evaluation. In: Handbook of soil science (Sumner ME, ed.). CRC Press, Boca Raton, FL, USA. pp: D113–D153. StatPoint, 2000. Statgraphics Plus 5.1. Rockville, MD, USA. 

Stevenson FJ, 1994. Humus chemistry: genesis, composition, reactions, 2nd ed. Wiley, NY, 496 pp. 

Stookey LL, 1970. Ferrozine: a new spectrophotometric reagent for iron. Anal Chem 42: 779–781.
http://dx.doi.org/10.1021/ac60289a016 

Tagliavini M, Baldi E, Lucchi P, Antonelli M, Sorrenti G, Baruzzi G, Faedi W, 2005. Dynamics of nutrients uptake by strawberry plants (Fragaria × ananassa Dutch.) grown in soil and soilless culture. Eur J Agron 23(1):15–25.
http://dx.doi.org/10.1016/j.eja.2004.09.002 

Yavari S, Eshghi S, Tafazoli E, Yavari S, 2009. Effects of organic substrates and nutrient solution on productivity and fruit quality of strawberry. Adv Biol Res 3: 34–39. 

Publicado
2013-01-29
Cómo citar
de Santiago, A., Carmona, E., Quintero, J. M., & Delgado, A. (2013). Effectiveness of mixtures of vivianite and organic materials in preventing iron chlorosis in strawberry. Spanish Journal of Agricultural Research, 11(1), 208-216. https://doi.org/10.5424/sjar/2013111-2671
Sección
Ciencia del suelo