Development of a remote sensing-based rice yield forecasting model
Resumen
This study aimed to develop a remote sensing-based method for forecasting rice yield by considering vegetation greenness conditions during initial and peak greenness stages of the crop; and implemented for “boro” rice in Bangladeshi context. In this research, we used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived two 16-day composite of normalized difference vegetation index (NDVI) images at 250 m spatial resolution acquired during the initial (January 1 to January 16) and peak greenness (March 23/24 to April 6/7 depending on leap year) stages in conjunction with secondary datasets (i.e., boro suitability map, and ground-based information) during 2007-2012 period. The method consisted of two components: (i) developing a model for delineating area under rice cultivation before harvesting; and (ii) forecasting rice yield as a function of NDVI. Our results demonstrated strong agreements between the model (i.e., MODIS-based) and ground-based area estimates during 2010-2012 period, i.e., coefficient of determination (R2); root mean square error (RMSE); and relative error (RE) in between 0.93 to 0.95; 30,519 to 37,451 ha; and ±10% respectively at the 23 district-levels. We also found good agreements between forecasted (i.e., MODIS-based) and ground-based yields during 2010-2012 period (R2 between 0.76 and 0.86; RMSE between 0.21 and 0.29 Mton/ha, and RE between -5.45% and 6.65%) at the 23 district-levels. We believe that our developments of forecasting the boro rice yield would be useful for the decision makers in addressing food security in Bangladesh.
Descargas
Citas
Bastiaanssen WGM, Ali S, 2003. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agr Eco Environ 94(3): 321-340. http://dx.doi.org/10.1016/S0167-8809(02)00034-8
BBS, 2010. Yearbook of agricultural statistics of Bangladesh. Bangladesh Bureau of Statistics, Government of the People's Republic of Bangladesh, 212 pp.
BBS, 2012. Yearbook of agricultural statistics of Bangladesh. Bangladesh Bureau of Statistics, Government of the People's Republic of Bangladesh, 230 pp.
Bonilla I, de Toda FM, Martinez-Casasnovas JA, 2015. Vine vigor, yield and grape quality assessment by airborne remote sensing over three years: Analysis of unexpected relations in cv. Tempranillo. Span J Agric Res 13(2): e0903. http://dx.doi.org/10.5424/sjar/2015132-7809
Chang KW, 2012. Establishment of rice yield prediction model using canopy reflectance. J Comp Biol Bioinf Res 4(4): 39-50. http://dx.doi.org/10.5897/JCBBR11.014
Chen C, Quilang EJP, Alosnos ED, Finnigan J, 2011. Rice area mapping, yield, and production forecasting for the province of Nueva Ecija using RDARSAT imagery. Can J Remote Sens 37(1): 1-16. http://dx.doi.org/10.5589/m11-024
Fortes R, Prieto MH, Garcia-Martin A, Córdoba A, Martinez L, Campillo C, 2015. Using NDVI and guided sampling to develop yield prediction maps of processing tomato crop. Span J Agric Res 13(1): e02-004. http://dx.doi.org/10.5424/sjar/2015131-6532
Guan X, Huang C, Liu G, Meng X, Liu Q, 2016. Mapping rice cropping system in Vietnam using an NDVI-based time-series similarity measurement based on DTW distance. Remote Sens 8(19): 1-25. http://dx.doi.org/10.3390/rs8010019
Guo L, Pei Z, Ma S, Sun J, Shang J, 2014. Study of rice identification during early season using multi-polarization TerraSAR-X data. In: Computer and Computing Technologies in Agriculture VII; Li D, Chen Y (Eds), pp: 337-347. Springer, Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-54344-9_40
Huang J, Wang X, Li X, Tian H, Pan Z, 2013. Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA's AVHRR. PLOS ONE 8(8): e70816. http://dx.doi.org/10.1371/journal.pone.0070816
Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG, 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1-2): 195-213. http://dx.doi.org/10.1016/S0034-4257(02)00096-2
Hussain SG, Chowdhury MKA, Chowdhury MAH, 2012. Land suitability assessment and crop zoning of Bangladesh. Bangladesh Agricultural Research Council: Dhaka, Bangladesh, 110 pp.
IPCC, 2014. Climate Change: Synthesis Report. IPCC Fifth Assessment Synthesis Report; Intergovernmental Panel on Climate Change, Geneva, Switzerland, 151 pp. http://www.ipcc.ch/report/ar5/syr/. [2 Nov 2014].
Jin C, Xiao X, Dong J, Qin Y, Wang Z, 2016. Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, Northeast China. Front Earth Sci 10(1): 49-62. http://dx.doi.org/10.1007/s11707-015-0518-3
Jing-Feng H, Shu-Chuan T, Abou-Ismail O, Ren-Chao W, 2002. Rice yield estimation using remote sensing and simulation model. J Zhejiang Uni Sci 3(4): 461-466. http://dx.doi.org/10.1631/jzus.2002.0461
Justice CO, Townshend JRG, Vermote EF, Masuoka E, Wolfe RE, Saleous N, Roy DP, Morisette JT, 2002. An overview of MODIS land data processing and product status. Remote Sens Environ 83(1-2): 3-15. http://dx.doi.org/10.1016/S0034-4257(02)00084-6
Kar G, Kumar A, 2014. Forecasting rainfed rice yield with biomass of early phenophases, peak intercepted PAR and ground based remotely sensed vegetation indices. J Agromet 16(1): 94-103.
Karmokar PK, Shitan M, 2012. Trend models for analysing sustainable production of rice in Bangladesh. Sci Res Essays 7(6): 669-678.
Khush GS, 2005. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59(1): 1-6. http://dx.doi.org/10.1007/s11103-005-2159-5
LeGrand SB, 2002. Cancer fatigue - more data, less information? Curr Oncol Rep 4(1): 275-279. http://dx.doi.org/10.1007/s11912-002-0001-7
Liu WT, Kogan F, 2002. Monitoring Brazilian soybean production using NOAA/AVHRR based vegetation condition indices. Int J Remote Sens 23(6): 1161-1179. http://dx.doi.org/10.1080/01431160110076126
Mkhabela MS, Bullock P, Raj S, Wang S, Yang Y, 2011. Crop yield forecasting on the Canadian prairies using MODIS NDVI data. Agric For Meteo 151(3): 385-393. http://dx.doi.org/10.1016/j.agrformet.2010.11.012
Mosleh MK, Hassan QK, 2014. Development of a remote sensing-based "Boro" rice mapping system. Remote Sens 6(3): 1938-1953. http://dx.doi.org/10.3390/rs6031938
Mosleh MK, Hassan QK, Chowdhury EH, 2015. Application of remote sensors in mapping rice area and forecasting its production: A review. Sensors 15(1): 769-791. http://dx.doi.org/10.3390/s150100769
Nguyen LD, Phung HP, Huth J, Phung CV, 2012. Estimation of the rice yield in the Mekong Delat using dual polarisation TerraSAR-X data. VNU J Sci Earth Sci 28: 20-28.
Noureldin NA, Aboelghar MA, Saudy HS, Ali AM, 2013. Rice yield forecasting models using satellite imagery in Egypt. Egypt J Remote Sens Space Sci 16(1): 125-131. http://dx.doi.org/10.1016/j.ejrs.2013.04.005
Nuarsa IW, Nishio F, Hongo C, 2011. Relationship between rice spectral and rice yield using MODIS data. J Agric Sci 3(2): 80-88. http://dx.doi.org/10.5539/jas.v3n2p80
Nuarsa IW, Nishio, F, Hongo C, 2012. Rice yield estimation using Landsat ETM+ data and field observation. J Agric Sci 4(3): 45-56.
Panigrahy S, Chakraborty M, Sharma SA, Kundu N, Ghose SC, Pal M, 1997. Early estimation of rice area using temporal ERS-1 synthetic aperture radar data a case study for the Howrah and Hughly districts of West Bengal, India. Int J Remote Sens 18(8): 1827-1833. http://dx.doi.org/10.1080/014311697218133
Patel NK, Ravi N, Navalagund RR, 1991. Estimation of rice yield using IRS-1A digital data in costal tract of Orissa. Int J Remote Sens 12(11): 2259-2266. http://dx.doi.org/10.1080/01431169108955256
Patel NK, Chakraborty M, Dutta S, Patnaik C, Parihar JS, Moharana SC, Das A, Sarangi BK, Behera G, 2004. Multiple forecasts of kharif rice in orissa state-four year experience of fasal pilot study. J Indian Soc Remote Sens 32(2): 125-143. http://dx.doi.org/10.1007/BF03030870
Prasad AK, Chai L, Singh RP, Kafatos M, 2006. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int J Appl Earth Obs Geoinf 8(1): 26-33. http://dx.doi.org/10.1016/j.jag.2005.06.002
Rahman A, Roytman L, Krakauer NY, Nizamuddin M, Goldberg M, 2009. Use of vegetation health data for estimation of Aus rice yield in Bangladesh. Sensors 9: 2968-2975. http://dx.doi.org/10.3390/s90402968
Rahman A, Khan K, Krakauer NY, Roytman L, Kogan F, 2012. Use of remote sensing data for estimation of Aman rice yield. Int J Agric For 2(1): 101-107. http://dx.doi.org/10.5923/j.ijaf.20120201.16
Rashid HE, 1991. Geography of Bangladesh. University Press Ltd, Dhaka, pp: 154-155.
Reynolds CA, Yitayew M, Slack DC, Hutchinson CF, Huete A, Petersen MS, 2000. Estimating crop yields and production by integrating the FAO crop specific water balance model with real-time satellite data and ground-based ancillary data. Int J Remote Sens 21(8): 3487-3508. http://dx.doi.org/10.1080/014311600750037516
Salazar L, Kogan F, Roytman L, 2007. Use of remote sensing data for estimation of winter wheat yield in the United States. Int J Remote Sens 28(17): 3795-3811. http://dx.doi.org/10.1080/01431160601050395
Savin IY, Isaev VA, 2010. Rice yield forecast based on satellite and meteorological data. Russ Agric Sci 36(6): 424-427. http://dx.doi.org/10.3103/S1068367410060108
Son NT, Chen CF, Chen CR, Chang LY, Duc HN, Nguyen LD, 2013. Prediction of rice crop yield using MODIS EVI-LAI data in the Mekong Delta, Vietnam. Int J Remote Sens 34(20): 7275-7292. http://dx.doi.org/10.1080/01431161.2013.818258
Wang YP, Chang KW, Chen RK, Lo JC, Shen Y, 2010. Large-area rice yield forecasting using satellite imageries. Int J Appl Earth Obs Geoinf 12(1): 27-35. http://dx.doi.org/10.1016/j.jag.2009.09.009
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.