Toxicological and ecotoxicological pressure due to pesticide use in Sancti Spíritus, Cuba

  • Edelbis López-Dávila Sancti Spíritus University, Study Centre of Energy and Industrial Process. Avda. de Los Mártires #360. Sancti Spíritus, Cuba Ghent University, Faculty of Bioscience Engineering, Dept. of Plants and Crops. Coupure Links 653, Ghent, Belgium
  • Michael Houbraken Ghent University, Faculty of Bioscience Engineering, Dept. of Plants and Crops. Coupure Links 653, Ghent
  • Jasmine De Rop Ghent University, Faculty of Bioscience Engineering, Dept. of Plants and Crops. Coupure Links 653, Ghent
  • Gijs Du Laing Ghent University, Faculty of Bioscience Engineering, Dept. of Green Chemistry and Technology. Coupure Links 653, Ghent
  • Osvaldo Romero Sancti Spíritus University, Study Centre of Energy and Industrial Process. Avda. de Los Mártires #360. Sancti Spíritus, Cuba School of Technology , SRH - Hochschule Berlin Ernts Reuter Platz 10, Berlin, Germany
  • Pieter Spanoghe Ghent University, Faculty of Bioscience Engineering, Dept. of Plants and Crops. Coupure Links 653, Ghent
Keywords: organophosphates, endosulfan, POCER, ƩSeq indicator

Abstract

Aim of study: To quantify the toxicity and ecotoxicological pressure of pesticides in Sancti Spíritus province, Cuba, between 2011 and 2014.

Material and methods: A longitudinal descriptive study was designed for the study period, to identify potential risks to the environment and human health associated with the use of pesticides. In order to determine the toxicity and ecotoxicity of pesticide use, ƩSeq (Spread equivalents), POCER (Pesticide Occupational and Environmental Risk) indicator, and the Toxic Load (TL) methodology of the Plant Health Cuban Institute were used.

Main results: Corresponding to 62 chemical families, 124 active ingredients were applied in the province during the study period. Organophosphates, carbamates, pyrethroids, inorganic compounds (such as copper), dithiocarbamates, aryloxyphenoxypropionates, neonicotinoids, sulfonylurea, triazoles, and organochlorines predominated due to their frequency of use. Use of toxic-pesticides, lack of personal protection equipment amount others made workers, residents and applicators the toxicological modules with the highest risk of exposure. From the POCER results we found that aquatic organisms, persistence, and groundwater are the modules with the highest ecotoxicological pressure.

Research highlights: With the use of the POCER indicator as well as ƩSeq, a more accurate assessment of toxicity and ecotoxicity from certain pesticide can be done instead of the TL equation currently used in Cuba. In addition substitution of the most toxic pesticides by less toxic ones could help to reduce synthetic pesticide pressure on humans and the environment. This study can help to develop policies and management practices to reduce the hazards of synthetic pesticide use in Cuba.

Downloads

Download data is not yet available.

References

Altenburger R, Arrhenius Å, Backhaus T, Coors A, Faust M, Zitzkat D, 2013. Ecotoxicological combined effects from chemical mixtures (Section IV). Federal Environment Agency (UBA, FKZ 3709 65 404). http://www.umweltbundesamt.de/publikationen/ecotoxicological-combined-effects-from-chemical

Böcker T, Finger R, 2016. European pesticide tax schemes in comparison: An analysis of experiences and developments. Sustainability 8 (378): 1-22. https://doi.org/10.3390/su8040378

Botião Nerilo S, Andrade Martins F, Botião Nerilo L, Cocco VE, Yoshio Endo R, Oliveira Rocha GH, et al., 2014. Pesticide use and cholinesterase inhibition in small-scale agricultural workers in southern Brazil. Braz J Pharm Sci 50 (4): 10. https://doi.org/10.1590/S1984-82502014000400014

Bozdogan AM, Yarpuz-Bozdogan N, Tobi I, 2015. Relationship between environmental risk and pesticide application in cereal farming. Int J Environ Res 9 (3): 1047-1054.

Burgos Alonso P, 2015. Estudio de estabilidad de plaguicidas en vegetales y frutas Laboratorio de Residuos de Agroquímicos Costa Rica. Revista Pensamiento Actual 15(25): 197-205.

Chau N D G, Sebesvari Z, Amelung W, Renaud F G, 2015. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces. Environ Sci Pollut Res 22(12): 9042-9058. https://doi.org/10.1007/s11356-014-4034-x

Claeys S, Vagenende B, De Smet B, Lelieur L, Steurbaut W, 2005. The POCER indicator: A decision tool for non-agricultural pesticide use. Pest Manag Sci 61(8): 779-786. https://doi.org/10.1002/ps.1062

Cremonese C, Freire C, Camargo A, Lima J, Koifman S, Meyer A, 2014. Pesticide consumption, central nervous system and cardiovascular congenital malformations in the South and Southeast region of Brazil. Int J Occup Med Environ Health 27(3): 474 - 486. https://doi.org/10.2478/s13382-014-0269-5

Cunha JP, Chueca P, Garcerá C, Moltó E, 2012. Risk assessment of pesticide spray drift from citrus applications with air-blast sprayers in Spain. Crop Prot 42: 116-123. https://doi.org/10.1016/j.cropro.2012.06.001

Damalas CA, Koutroubas S D, 2018. Farmers' behaviour in pesticide use: A key concept for improving environmental safety. Curr Opin Environ Sci Health 4: 27-30. https://doi.org/10.1016/j.coesh.2018.07.001

De Smet B, Steurbaut W, 2002. Verfijning van de SEQ-indicator voor de evaluatie van het bestrijdingsmiddelengebruik in Vlaanderen,. Studie Uitgevoerd in Opdracht van de Vlaamse Milieumaatschappij, MIRA, Universiteit Gent, Vakgroep Gewasbescherming.

De Smet B, Claeys S, Vagenende B, Overloop S, Steurbaut W, Van Steertegem M, 2005. The sum of spread equivalents: a pesticide risk index used in environmental policy in Flanders, Belgium. Crop Prot 24(4): 363-374. https://doi.org/10.1016/j.cropro.2004.09.005

Díaz Martínez JD, 2009. Disminución del número de aplicaciones de plaguicidas químicos en la Empresa Cultivos Varios Manacas. Universidad Central "Martha Abreu" de Las Villas, Cuba.

Dugger-Webster A, LePrevost CE, 2018. Following pesticide labels: A continued journey toward user comprehension and safe use. Curr Opin Environ Sci Health 4: 19-26. https://doi.org/10.1016/j.coesh.2018.03.004

EFSA, 2017. The 2015 European Union report on pesticide residues in food. EFSA J 15(4): 134. https://doi.org/10.2903/j.efsa.2017.4791

FAO-PNUMA, 2016. Rotterdam Convention. on the Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Trade. www.pic.int

Fevery D, Peeters B, Lenders S, Spanoghe P, 2015. Adjustments of the Pesticide Risk Index Used in Environmental Policy in Flanders. PLoS one 10(6): 1-21. https://doi.org/10.1371/journal.pone.0129669

Fevery D, Houbraken M, Spanoghe P, 2016. Pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium. Sci Total Environ 550: 514-521. https://doi.org/10.1016/j.scitotenv.2016.01.123

González Valiente ML, Conill Díaz TP, 1999. Mortalidad por intoxicaciones agudas producidas por plaguicidas: Cuba, 1990-1994. Rev Cubana Hig Epidemiol 37(2): 76-81. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561-30031999000200005&lng=es&nrm=iso&tlng=es

Hernández Núñez J, Pérez-Consuegra N, 2012. Tendencias en el uso de plaguicidas en Batabanó, provincia Mayabeque. Agricultura Orgánica 18(1): 30-33. http://www.actaf.co.cu/revistas/revista_ao_95-2010/Rev 2012-1/10 plaguicidasBatabano.pdf

Hladik ML, Vandever M, Smalling KL, 2016. Exposure of native bees foraging in an agricultural landscape to current-use pesticides. Sci Total Environ 542: 469-477. https://doi.org/10.1016/j.scitotenv.2015.10.077

Kruijne R, van der Linden AM, Deneer JW, Groenwold JG, Wipfler EL, 2012. Dutch Environmental Risk Indicator for Plant Protection Products. Wageningen, Alterra-Report 2250.1, 84. http://www.alterra.wur.nl

Kudsk P, Jørgensen LN, Ørum JE, 2018. Pesticide Load-A new Danish pesticide risk indicator with multiple applications. Land Use Policy, 70: 384-393. https://doi.org/10.1016/j.landusepol.2017.11.010

la Rosa Cruz NL, Sánchez-Salinas E, Ortiz-Hernández ML, 2014. Biosurfactantes y su papel en la biorremediación de suelos contaminados con plaguicidas. RELBAA, 4(1): 47-67. https://doi.org/10.7603/s40682-013-0004-0

Levine SL, Borgert CJ, 2018. Review and recommendations on criteria to evaluate the relevance of pesticide interaction data for ecological risk assessments. Chemosphere 209: 124-136. https://doi.org/10.1016/j.chemosphere.2018.06.081

Leyva Morales JB, García de la Parra LM, Bastidas Bastidas PJ, Astorga Rodríguez JE, Bejarano Trujillo J, Cruz Hernández A, et al., 2014. Uso de plaguicidas en un valle agrícola tecnificado en el noroeste de México. Rev Int Contam Ambie 30(3): 247-261. http://www.scielo.org.mx/pdf/rica/v30n3/v30n3a2.pdf

Lopez Davila E, Ramos Torres L, Houbraken M, Du Laing G, Romero Romero O, Spanoghe P, 2020. Cuba pesticides knowledge and practical use. Ciencia & Tecnología Agropecuaria, 21(1): e1282. https://doi.org/10.21930/rcta.vol21_num1_art:1282

Mendonca M, Tamas C, Kiraly L, Talo H, Rajah J, 2016. Successful use of ECLS in cardiopulmonary failure due to aluminum phosphide poising. Egypt J Crit Care Med 4(1): 33-35 https://doi.org/10.1016/j.ejccm.2016.02.004

Mesnage R, Defarge N, De Vendômois J S, Séralini G, 2014. Major pesticides are more toxic to human cells than their declared active principles. Biomed Res Int: Article ID 179691. https://doi.org/10.1155/2014/179691

Moermond CTA, Kase R, Korkaric M, Ågerstrand M, 2016. Hazard/Risk assessment CRED : Criteria for reporting and evaluating ecotoxicity data. Environ Toxicol Chem 35(5): 1297-1309. https://doi.org/10.1002/etc.3259

Morel D, 2010. NAP Best Practice. Sustainable use of pesticides: Implementing a National Action Plan. In Meeting the challenge, protecting health, environment & biodiversity.

Mwila K, Burton MH, Van Dyk JS, Pletschke BI, 2013. The effect of mixtures of organophosphate and carbamate pesticides on acetylcholinesterase and application of chemometrics to identify pesticides in mixtures. Environ Monit Assess 185(3): 2315-2327. https://doi.org/10.1007/s10661-012-2711-0

National Bureau of Statistics and Information, 2015. Statistical Yearbook 2014 Sancti Spíritus. http://www.one.cu/publicaciones/provincias_masinf/sancti spiritus.htm

Nordborg M, Arvidsson R, Finnveden G, Cederberg C, Sörme L, Palm V, et al., 2017. Updated indicators of Swedish national human toxicity and ecotoxicity footprints using USEtox 2 . 01. Environ Impact Assess Rev 62: 110-114. https://doi.org/10.1016/j.eiar.2016.08.004

OMS/FAO, 2014. Código Internacional de Conducta para la Gestión de Plaguicidas. Organización de las Naciones Unidas para la Agricultura y la Alimentación Organización Mundial de la Salud.

ONEI, 2017. CAPÍTULO 8: Sector Externo. Anuario Estadístico de Cuba 2016. http://www.one.cu/aec2016/08 Sector Externo.pdf

ONEI, 2019. Oficina Nacional de Estadistica e Información de la republica de Cuba. Agricultura, Ganaderia, Silvicultura y Pesca. http://www.one.cu/

Oussama M, Kamel E, Philippe LG, Elisabeth M, Jacques F, Habiba A, et al., 2015. Assessing plant protection practices using pressure indicator and toxicity risk indicators : analysis of therelationship between these indicators for improved risk management , application in viticulture. Environ Sci Pollut Res 22: 8058-8074. https://doi.org/10.1007/s11356-014-3736-4

Petersen K, Stenrød M, Tollefsen KE, 2013. Initial environmental risk assessment of combined effects of plant protection products in six different areas in Norway (6588th-2013th ed.).

Räsänen K, Nousiainen R, Kurppa S, Autio S, Junnila S, Tiilikkala K, et al., 2013. How to measure the environmental risks from uses of plant protection products for achieving the IPM requirements and risk communication - A case study on the production chain of cereal farming in Finland. https://jukuri.luke.fi/handle/10024/481109

Räsänen K, Mattila T, Porvari P, Kurppa S, Tiilikkala K, 2015. Estimating the development of ecotoxicological pressure on water systems from pesticides in Finland 2000-2011. J Clean Prod 89: 65-77. https://doi.org/10.1016/j.jclepro.2014.11.008

Roberts JR, Routt Reigart J, 2013. Recognition and management of pesticide poisonings (Sixth). Office of Pesticide Programs, U. S. Enviromental Protection Agency. http://www2.epa.gov/pesticide-worker-safety%0A?????

Rosquete Pérez C, 2011. Evaluación de impacto de la supresión de endosulfán en el agroecosistema Güira de Melena, Master Tesis, Universidad Agraria de La Habana, Artemisa, Cuba.

Schreinemachers P, Afari-sefa V, Hy C, Thi P, Dung M, Praneetvatakul S, et al., 2015. Environmental Science & Policy Safe and sustainable crop protection in Southeast Asia : Status , challenges and policy options. Environ Sci Policy 54: 357-366. https://doi.org/10.1016/j.envsci.2015.07.017

Shil Cha E, Hwang S, Jin Lee W, 2014. Childhood leukemia mortality and farming exposure in South Korea : A national population-based birth cohort study. Cancer Epidemiol 38(4): 401-407. https://doi.org/10.1016/j.canep.2014.05.003

Strassemeyer J, Gutsche V, 2010. The approach of the German pesticide risk indicator SYNOPS in frame of the National Action Plan for Sustainable Use of Pesticides. OECD Workshop on Agri-Environmental Indicators, Leysin, Switzerland, 23-26 March 2010, 19. http://www.oecd.org/document/9/0,3746,en_2825_494504_43662921_1_1_1_1,00.html

Tollefsen KE, Bæk K, Almeida AC, Haug LA, Norli HR, Odenmarck S, et al., 2016. Evaluation of the combined toxicity assessment and cumulative risk assessment of ecologically relevant mixtures of plant protection products (PPPs) under Norwegian conditions. (7030th ed.). Norwegian Institute for Water Research.

UNEP/POPS/POPRC.5/10, 2009. Stockholm Convention on Persistent Organic Pollutants. Report of the Persistent Organic Pollutants Review Committee on the work of its fifth meeting (Issue November). http://chm.pops.int/Default.aspx?tabid=592

Vázquez PP, Lozano A, Uclés S, Ramos MMG, Fernández-Alba A R, 2015. A sensitive and efficient method for routine pesticide multiresidue analysis in bee pollen samples using gas and liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 1426: 24 December 2015, Pages 161-173 https://doi.org/10.1016/j.chroma.2015.11.081

Ventura C, Ramos Nieto MR, Bourguignon N, Lux-Lantos V, Rodriguez H, Cao G, et al., 2016. Pesticide chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance. J Steroid Biochem Mol 156: 10. https://doi.org/10.1016/j.jsbmb.2015.10.010

Vercruysse F, Steurbaut W, 2002. POCER, the pesticide occupational and environmental risk indicator. Crop Prot 21(4): 307-315. https://doi.org/10.1016/S0261-2194(01)00102-8

Vryzas Z, 2018. Pesticide fate in soil-sediment-water environment in relation to contamination preventing actions. Curr Opin Environ Sci Health 4: 5-9. https://doi.org/10.1016/j.coesh.2018.03.001

WHO, 2009. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification. WHO Press. http://www.who.int/ipcs/publications/pesticides_hazard_2009.pdf

Wustenberghs H, Delcour I, D'Haene K, Lauwers L, Marchand F, Steurbaut W, et al., 2012. A dual indicator set to help farms achieve more sustainable crop protection. Pest Manag Sci 68(8): 1130-1140. https://doi.org/10.1002/ps.3332

Wustenberghs H, Fevery D, Lauwers L, Marchand F, Spanoghe P, 2018. Minimising farm crop protection pressure supported by the multiple functionalities of the DISCUSS indicator set. Sci Total Environ 618: 1184-1198. https://doi.org/10.1016/j.scitotenv.2017.09.211

Yarpuz-Bozdogan N, Bozdogan AM, 2016. Pesticide exposure risk on occupational health in herbicide application. Fresenius Environ Bull 25(9): 3720-3727.

Published
2021-02-09
How to Cite
López-Dávila, E., Houbraken, M., De Rop, J., Du Laing, G., Romero, O., & Spanoghe, P. (2021). Toxicological and ecotoxicological pressure due to pesticide use in Sancti Spíritus, Cuba. Spanish Journal of Agricultural Research, 18(4), e0305. https://doi.org/10.5424/sjar/2020184-15450
Section
Agricultural environment and ecology