Food restriction in Nile tilapia juveniles (Oreochromis niloticus)

  • Tatiane A. Lui Universidade Estadual do Oeste do Paraná (Unioeste), Grupo de Estudos de Manejo na Aquicultura (GEMAq). Toledo, Paraná 85903-000
  • Wesley P. da Silva Universidade Federal da Grande Dourados (UFGD), Faculdade de Ciências Agrárias (FCA), Grupo de Estudos em Produção Aquícola (GEPAq). Dourados, Mato Grosso do Sul 79804-970
  • Juliana A. L. Nervis Universidade Estadual do Oeste do Paraná (Unioeste), Grupo de Estudos de Manejo na Aquicultura (GEMAq). Toledo, Paraná 85903-000
  • Jackeline M. D. Brum Universidade Estadual do Oeste do Paraná (Unioeste), Grupo de Estudos de Manejo na Aquicultura (GEMAq). Toledo, Paraná 85903-000
  • Fabio Bittencourt Universidade Estadual do Oeste do Paraná (Unioeste), Grupo de Estudos de Manejo na Aquicultura (GEMAq). Toledo, Paraná 85903-000
  • Dacley H. Neu Universidade Federal da Grande Dourados (UFGD), Faculdade de Ciências Agrárias (FCA), Grupo de Estudos em Produção Aquícola (GEPAq). Dourados, Mato Grosso do Sul 79804-970
  • Wilson R. Boscolo Universidade Estadual do Oeste do Paraná (Unioeste), Grupo de Estudos de Manejo na Aquicultura (GEMAq). Toledo, Paraná 85903-000
Keywords: dietary regime, feed cost evaluation, skeletal muscle fiber, zootechnical performance

Abstract

Aim of study: To evaluate if dietary restriction influence muscle and intestinal morphology as well as the production performance of juvenile Nile tilapia (Oreochromis niloticus).

Area of study: State University of Western Paraná (Universidade Estadual do Oeste do Paraná – Unioeste), Toledo Campus, Brazil.

Material and methods: The experimental design was completely randomized with four treatments and five replicates. The treatments were: 7:0 (fed daily; control); 6:1 (fed 6 consecutive days followed by 1 day of fasting); 5:2 (fed 5 consecutive days followed by 2 days of fasting); and 1:1 (fed 1 day followed by 1 day of fasting). A commercial ration with 33.70% crude protein and 4.60% lipid was used, and fish were fed four times daily until apparent satiety for 60 days.

Main results: The following parameters were found to have differences among treatments (p<0.05): final weight, weight gain, final length, hepatosomatic index, visceral fat, intestinal quotient, protein efficiency rate, protein retention, ash, and frequency of muscle fiber diameters within the classes of<20 μm and between 20 and 50 μm. The intestinal villi height and hepatic glycogen content did not differ (p>0.05) among treatments. The cost of food and partial net revenue were higher in the 7:0 treatment compared to the experimental treatments.

Research highlights: Dietary restriction for Nile tilapia in the juvenile phase negatively influences productive performance, centesimal composition, and muscle growth, which demonstrates that this practice is economically unfeasible for commercial production.

Downloads

Download data is not yet available.

References

Abdel-Hakim NF, Abo State HA, Al-Azab AA, El-Kholy KF, 2009. Effect of feeding regimes on growth performance of juvenile hybrid tilapia (Oreochromis niloticus x Oreochromis aureus). World J Agric Sci 5: 49-54.

Ali M, Nicieza A, Wootton RJ, 2003. Compensatory growth in fishes: A response to growth depression. Fish Fish 4: 147-190. https://doi.org/10.1046/j.1467-2979.2003.00120.x

Almeida FLA, Carvalho RF, Pinhal D, Padovani CR, Martins C, Dal Pai-Silva M, 2008. Differential expression of myogenic regulatory factor MyoD in pacu skeletal muscle (Piaractus mesopotamicus Holmberg 1887: Serrasalminae, Characidae, Teleostei) during juvenile and adult growth phases. Micron 39: 1306-1311. https://doi.org/10.1016/j.micron.2008.02.011

AOAC, 1995. Official methods of analysis of Official Analytical Chemists International, 16th ed. Association of Official Analytical Chemists, Arlington, VA, USA.

Arauco LRR, Costa VB, 2012. Restrição alimentar no desempenho produtivo da tilápia (Oreochromis niloticus). Comun Sci 3: 134-138.

Arruda AMV, Fernandes RTV, Silva JM, Lopes DC, 2008. Avaliação morfo-histológica da mucosa intestinal de coelhos alimentados com diferentes níveis e fontes de fibra. Rev Caatinga - Univ Rural do Semi Árido 21: 1-11.

Bastrop R, Spangenberg R, Jurss K, 1991. Biochemical adaptation of juvenile carp (Cyprinus carpio L.) to food deprivation. Comp Biochem Physiol 98 A: 143-149. https://doi.org/10.1016/0300-9629(91)90592-Z

Beçak W, Paulete J, 1976. Técnicas de citologia. Rio de Janeiro: Livros Técnicos Científicos, v. 2. 574 pp.

Behmer OA, Tolosa EMC, Freitas Neto AG, 1976. Manual de técnicas para histologia normal e patológica, 1st ed. Edusp/Edart, São Paulo.

Black D, Love RM, 1986. The sequential mobilization and restoration of energy reserves in tissues of Atlantic cod during starvation and refeeding. Comp Biochem Physiol B 156: 469-479. https://doi.org/10.1007/BF00691032

Blasco J, Fernandez F, Gutiérrez J, 1992. Fasting and refeeding in carp, Cyprinus carpio L.: the mobilization of reserves and plasma metabolite and hormone variations. Comp Biochem Physiol B 162: 539-546. https://doi.org/10.1007/BF00264815

Buddington RK, Chen JW, Diamond J, 1987. Genetic and phenotypic adaptation of intestinal nutrient transport to diet in fish. J Physiol 393: 261-281. https://doi.org/10.1113/jphysiol.1987.sp016823

Carvalho JV, Lira AD, Costa DSP, Moreira ELT, Pinto LFB, Abreu RD, Albinati RCB, 2011. Desempenho zootécnico e morfometria intestinal de alevinos de tilápia-do -Nilo alimentados com Bacillus subtilis ou mananoligossacarídeo. Rev Bras Saúde Produção Anim 12: 176-187.

Contreras-Guzmán ES, 2002. Bioquímica de pescados e invertebrados. CECTAUSACH, Santiago.

Cook JT, Sutterlin AM, McNiven MA, 2000. Effect of food deprivation on oxygen consumption and body composition of growth-enhanced transgenic Atlantic salmon (Salmo salar). Aquaculture 188: 47-63. https://doi.org/10.1016/S0044-8486(00)00333-1

DOE, 2015. Decreto 1198. Valores do piso salarial do estado do Paraná. Diário Oficial Executivo 456, Brazil.

El-Sayed AFM, 2019. Tilapia culture, 2nd Edition. Academic Press, London.

Eroldoǧan OT, Kumlu M, Aktaş M, 2004. Optimum feeding rates for European sea bass Dicentrarchus labrax L. reared in seawater and freshwater. Aquaculture 231: 501-515. https://doi.org/10.1016/j.aquaculture.2003.10.020

Favero GC, Gimbo RY, Franco Montoya LN, Carneiro DJ, Urbinati EC, 2020. A fasting period during grow-out make juvenile pacu (Piaractus mesopotamicus) leaner but does not impair growth. Aquaculture 524: 735242. https://doi.org/10.1016/j.aquaculture.2020.735242

Godinho HP, 2007. Estratégias reprodutivas de peixes aplicadas à aquicultura: bases para o desenvolvimento de tecnologias de produção. Rev Bras Reprodução Anim 31: 351-360.

Gomes LC, Chippari-Gomes AR, Lopes NP, Roubach R, Araujo-Lima CARM, 2001. Efficacy of benzocaine as an anesthetic in juvenile tambaqui Colossoma macropomum. J World Aquac Soc 32: 426-431. https://doi.org/10.1111/j.1749-7345.2001.tb00470.x

Gong Y, Chen W, Han D, Zhu X, Yang Y, Jin J, Liu H, Xie S, 2017. Effects of food restriction on growth, body composition and gene expression related in regulation of lipid metabolism and food intake in grass carp. Aquaculture 469: 28-35. https://doi.org/10.1016/j.aquaculture.2016.12.003

Hagen O, Fernandes JMO, Solberg C, Johnston IA, 2009. Expression of growth-related genes in muscle during fasting and refeeding of juvenile Atlantic halibut, Hippoglossus hippoglossus L. Comp Biochem Physiol B Biochem Mol Biol 152: 47-53. https://doi.org/10.1016/j.cbpb.2008.09.083

Johnston IA, Hall T, 2004. Mechanisms of muscle development and responses to temperature changes in fish larvae. Am Fish Soc Symp 40: 85-116.

Koch JFA, Esperancini EST, Barros MM, Carvalho PLPF, Fernandes Junior AC, Teixeira CP, Pezzato LE, 2014. Economic analysis of feeding tilapia in cages with digestible protein and energy levels. Bol Inst Pesca 40: 605-616.

Metcalfe NB, Monaghan P, 2001. Compensation for a bad start: Grow now, pay later? Trends Ecol Evol 16: 254-260. https://doi.org/10.1016/S0169-5347(01)02124-3

Mihelakakis A, Tsolkas C, Yoshimatsu T, 2002. Optimization of feeding rate for hatchery-produced juvenile gilthead sea bream Sparus aurata. J World Aquac Soc 33: 169-175. https://doi.org/10.1111/j.1749-7345.2002.tb00491.x

Nebo C, 2011. Expressão de genes relacionados ao crescimento muscular durante a restrição alimentar e realimentação em juvenis de tilápia do Nilo, Oreochromis niloticus, linhagem chitralada. UNESP.

Neu DH, Boscolo WR, Zaminham M, Almeida FL, Sary C, Furuya WM, 2016. Growth performance, biochemical responses, and skeletal muscle development of juvenile Nile Tilapia, Oreochromis niloticus, fed with increasing levels of arginine. J World Aquac Soc 47: 248-259. https://doi.org/10.1111/jwas.12262

Palma EH, Takahashi LS, Dias LTS, Gimbo RY, Kojima JT, Nicodemo D, 2010. Estratégia alimentar com ciclos de restrição e realimentação no desempenho produtivo de juvenis de tilápia do Nilo da linhagem GIFT. Ciênc Rural 40: 391-396. https://doi.org/10.1590/S0103-84782010000200026

PeixeBR, 2019. Anuário PeixeBR da Piscicultura, São Paulo, v1, 148 pp. https://www.peixebr.com.br/anuario-2020/

Pereira RT, Rosa PV, Gatlin III DM, 2017. Glutamine and arginine in diets for Nile tilapia: Effects on growth, innate immune responses, plasma amino acid profiles and whole-body composition. Aquaculture 473: 135-144. https://doi.org/10.1016/j.aquaculture.2017.01.033

Rosauer DR, Morris JE, Clayton RD, 2009. Role of compensatory growth in Walleye fingerling production. N Am J Aquac 71: 35-38. https://doi.org/10.1577/A07-064.1

Rowlerson A, Veggetti A, 2001. Cellular mechanisms of post-embryonic muscle growth in aquaculture species. In: Vol 18 of 'Fish Physiology' series; Johnston IA (Ed.). San Diego, pp: 103-140. https://doi.org/10.1016/S1546-5098(01)18006-4

Sanchez-Muros MJ, Garcia-Rejon I, Lupianez JA, Higuera MDI, 1996. Long-term nutritional effects on the primary liver and kidney metabolism in rainbow trout (Oncorhynchus mykiss). II. Adaptative response of glucose-6-phosphate dehydrogenase activity to high carbohydrate/low protein and high fat/non carbohydrate diets. Aquacult Nutr 2: 193-200. https://doi.org/10.1111/j.1365-2095.1996.tb00059.x

Sevgili H, Hossu B, Emre E, Kanyilmaz M, 2012. Compensatory growth after various levels of dietary protein restriction in rainbow trout Oncorhynchus mykiss. Aquaculture 344-349: 126-134. https://doi.org/10.1016/j.aquaculture.2012.03.030

Shearer KD, 1994. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture 119: 63-88. https://doi.org/10.1016/0044-8486(94)90444-8

Sheridan MA, Mommsen TP, 1991. Effects of nutritional state on in vivo lipid and carbohydrate metabolism of coho salmon, Oncorhynchus kisutch. Gen Comp Endocrinol 81: 473-483. https://doi.org/10.1016/0016-6480(91)90175-6

Souza VL, Urbinati EC, Chainho D, Silva PC, 2002. Composição corporal e índices biométricos do pacu, Piaractus mesopotamicus Holmberg, 1887 (Osteichthyes, Characidae) submetidos a ciclos alternados de restrição alimentar e realimentação. Acta Sci 24: 533-540.

Souza VL, Urbinati EC, Martins MIEG, Silva PC, 2003. Avaliação do crescimento e do custo da alimentação do Pacu (Piaractus mesopotamicus Holmberg, 1887) submetido a ciclos alternados de restrição alimentar e realimentação. Rev Bras Zootec 32: 19-28. https://doi.org/10.1590/S1516-35982003000100003

Statsoft Inc., 2005. Statistica version 7.1. www.statsoft.com.

Takashima F, Hibiya T, 1995. An atlas of fish histology: normal and pathological features, 2nd ed. Kondansha Ltda., Tokio.

Valente LMP, Rocha E, Gomes EFS, Silva MW, Oliveira MH, Monteir RAF, Fauconneaus B, 1999. Growth dynamics of white and red muscle fibres in fast- and slow-growing strains of rainbow trout. J Fish Biol 55: 675-691. https://doi.org/10.1111/j.1095-8649.1999.tb00710.x

Wang YH, Xu M, Wang FN, Yu ZP, Yao JH, Zan LS, Yang FX, 2009. Effect of dietary starch on rumen and small intestine morphology and digesta pH in goats. Livest Sci 122: 48-52. https://doi.org/10.1016/j.livsci.2008.07.024

Weatherley AH, Gill HS, 1987. The biology of fish growth. Academic Press, London.

Won ET, Borski RJ, 2013. Endocrine regulation of compensatory growth in fish. Front Endocrinol 4: 1-13. https://doi.org/10.3389/fendo.2013.00074

Xu C, Liu WB, Remø SC, Wang BK, Shi HJ, Zhang L, Liu JD, Li XF, 2019. Feeding restriction alleviates high carbohydrate diet-induced oxidative stress and inflammation of Megalobrama amblycephala by activating the AMPK-SIRT1 pathway. Fish Shellfish Immunol 92: 637-648. https://doi.org/10.1016/j.fsi.2019.06.057

Published
2020-12-29
How to Cite
Lui, T. A., da Silva, W. P., Nervis, J. A. L., Brum, J. M. D., Bittencourt, F., Neu, D. H., & Boscolo, W. R. (2020). Food restriction in Nile tilapia juveniles (Oreochromis niloticus). Spanish Journal of Agricultural Research, 18(3), e0607. https://doi.org/10.5424/sjar/2020183-15639
Section
Animal production