Effects of irrigation and shoot thinning on the size and phenolics content of developing grape berries (Vitis vinifera L. cv. Tempranillo)

  • María E. Molero de Ávila Universidad de Extremadura, Facultad de Ciencias, Área de Biología Celular, Dept. Anatomía, Biología Celular y Zoología. 06006 Badajoz http://orcid.org/0000-0002-1517-2273
  • María V. Alarcón Instituto de Investigaciones Agrarias Finca "La Orden-Valdesequera", Dept. Hortofruticultura. CICYTEX. Junta de Extremadura. 06187 Guadajira (Badajoz)
  • Daniel Moreno INTAEX, Dept. de Enología. CICYTEX. Junta de Extremadura. 06071 Badajoz http://orcid.org/0000-0002-1540-1590
  • Luis A. Mancha Instituto de Investigaciones Agrarias Finca "La Orden-Valdesequera", Dept. Hortofruticultura. CICYTEX. Junta de Extremadura. 06187 Guadajira (Badajoz) http://orcid.org/0000-0003-3698-3603
  • David Uriarte Instituto de Investigaciones Agrarias Finca "La Orden-Valdesequera", Dept. Hortofruticultura. CICYTEX. Junta de Extremadura. 06187 Guadajira (Badajoz) http://orcid.org/0000-0003-2035-8109
  • Javier Francisco-Morcillo Universidad de Extremadura, Facultad de Ciencias, Área de Biología Celular, Dept. Anatomía, Biología Celular y Zoología. 06006 Badajoz http://orcid.org/0000-0002-1100-3878
Keywords: berry development, berry weight, phenolic compounds, proanthocyanidins, anthocyanins

Abstract

 

Aim of study: The concentration of phenolics in the grape berries can be influenced by cultural practices such as irrigation or thinning. The main objective of the present study was to evaluate the effect of combinations of these practices on grape size and phenolics content.

 

Area of study: The trial was carried out in an experimental cv. Tempranillo vineyard located in Extremadura, Spain.

 

Material and methods: Two irrigation regimes were considered: rainfed vines (non-irrigated, NIr), and 100% ETc irrigated vines (Ir). For each irrigation treatment, two cropping levels were studied: low shoot-thinning (LT) vs high shoot-thinning (HT) implemented in winter and spring, respectively. Berry weight, and total phenolics, proanthocyanidin, and anthocyanin concentrations were determined at eight stages of berry development in three consecutive years (2014, 2015, and 2016).

 

Main results: Specific weather conditions of each year affected phenolics accumulation differently. In 2014, where maximum temperatures were low and an important rainfall occurred at Stage II, both the NIr-LT and NIr-HT treatments led to the greatest concentrations of total phenolics, proanthocyanidins, and anthocyanins. In 2015, where a little rainfall was registered at Stage II, the berries from the NIr-HT and Ir-HT treatments accumulated the greatest total phenolics and proanthocyanidin contents, but the NIr-LT and NIr-HT treatments led to the greatest accumulation of anthocyanins. Finally, in 2016, where high maximum temperatures and scarce rainfall were registered, the Ir-LT and Ir-HT treatments presented the greatest concentrations of total phenolics, proanthocyanidins, and anthocyanins.

 

Research highlights: A significant effect of irrigation and thinning was observed on berry size and phenolic content, as well as year × thinning interaction.


Downloads

Download data is not yet available.

References

Adams DO, 2006. Phenolics and ripening in grape berries. Am J Enol Vitic 57: 249-256.

Basile B, Marsal J, Mata M, Vallverdú X, Bellvert J, Girona J, 2011. Phenological sensitivity of Cabernet Sauvignon to water stress: Vine physiology and berry composition. Am J Enol Vitic 62: 452-461. https://doi.org/10.5344/ajev.2011.11003

Bergqvist J, Dokoozlian N, Ebisuda N, 2001. Sunlight exposure and temperature effects on berry growth and composition of Cabernet sauvignon and Grenache in the central San Joaquin valley of California. Am J Enol Vitic 52 (1): 1-7.

Bindon K, Varela C, Kennedy J, Holt H, Herderich M, 2013. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 1. Grape and wine chemistry. Food Chem 138: 1696-1705. https://doi.org/10.1016/j.foodchem.2012.09.146

Boss PK, Davies C, 2009. Molecular biology of anthocyanin accumulation in grape berries, in grapevine molecular physiology & biotechnology; Roubelakis-Angelakis KA (ed). Springer, Dordrecht, pp: 263-292. https://doi.org/10.1007/978-90-481-2305-6_10

Boss PK, Davies C, Robinson SP, 1996. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol 111: 1059-1066. https://doi.org/10.1104/pp.111.4.1059

Boyles MJ, Wrolstad RE, 1993. Anthocyanin composition of red raspberry juice: Influences of cultivar, processing, and environmental factors. J Food Sci 58: 1135-1141. https://doi.org/10.1111/j.1365-2621.1993.tb06132.x

Broadhurst RB, Jones WT, 1978. Analysis of condensed tannins using acidified vanillin. J Sci Food Agric 29 (9): 788-794. https://doi.org/10.1002/jsfa.2740290908

Cadot Y, Miñana MT, Chevalier M, 2006. Flavan-3-ol compositional changes in grape berries (Vitis vinifera L. cv Cabernet Franc) before veraison, using two complementary analytical approaches, HPLC reversed phase and histochemistry. Anal Chim Acta 563: 65-75. https://doi.org/10.1016/j.aca.2006.01.063

Carbonell-Bejerano P, Rodríguez V, Hernáiz S, Grimplet J, Royo C, Martínez-Zapater JM, 2012. Análisis transcriptómico de la maduración en uvas de 'Tempranillo' y 'Albariño' (Vitis vinifera L.) clasificadas según su densidad. Actas de Horticultura 60: 554-557.

Crippen DD, Morrison JC, 1986. The effects of sun exposure on the phenolic content of Cabernet Sauvignon berries during development. Am J Enol Vitic 37: 243-247.

Diago MP, Vilanova M, Blanco JA, Tardaguila J, 2010. Effects of mechanical thinning on fruit and wine composition and sensory attributes of Grenache and Tempranillo varieties (Vitis vinifera L.). Aust J Grape Wine Res 16: 314-326. https://doi.org/10.1111/j.1755-0238.2010.00094.x

Dokoozlian N, Hirschfelt D, 1995. The influence of cluster thinning at various stages of fruit development on Flame Seedless table grapes. Am J Enol Vitic 46 (4): 429-436.

Downey MO, Harvey JS, Robinson SP, 2004. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Aus J Grape Wine Res 10: 55-73. https://doi.org/10.1111/j.1755-0238.2004.tb00008.x

Downey MO, Dokoozlian NK, Krstic MP, 2006. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Vitic 57: 257-268.

Eichhorn KW, Lorenz DH, 1977. Phöenologische Entwicklungsstadie. Der rebe. Nachrichtenb. Deutsch Pflanzenschutzd (Braunschweig), pp: 119-120.

Esteban MA, Villanueva MJ, Lissarrague JR, 2001. Effect of irrigation on changes in the anthocyanin composition of the skin of cv Tempranillo (Vitis vinifera L) grape berries during ripening. J Sci Food Agric 81: 409-420. https://doi.org/10.1002/1097-0010(200103)81:4<409::AID-JSFA830>3.0.CO;2-H

Freese PK, 1988. Canopy modification and fruit composition. Proc 2nd Int Cool Climate Viticulture and Oenology; Smart RE et al. (eds), New Zealand, pp: 134-136.

Gamero E, Moreno D, Talaverano I, Prieto MH, Guerra MT, Valdés ME, 2014. Effects of irrigation and cluster thinning on Tempranillo grape and wine composition. S Afr J Enol Vitic 35 (2): 196-204. https://doi.org/10.21548/35-2-1006

Garrido I, Llerena JL, Valdés ME, Mancha LA, Uriarte D, Prieto MH, Espinosa F, 2014. Effects of defoliation and water restriction on total phenols and antioxidant activities in grapes during ripening. J Int Sci Vigne Vin 48: 31-42. https://doi.org/10.20870/oeno-one.2014.48.1.1654

Garrido I, Uriarte D, Hernández M, Llerena JL, Valdés ME, Espinosa F, 2016. The evolution of total phenolic compounds and antioxidant activities during ripening of grapes (Vitis vinifera L., cv. Tempranillo) grown in semiarid region: effects of cluster thinning and water deficit. Int J Mol Sci 17: 1923. https://doi.org/10.3390/ijms17111923

Ginestar C, Eastham J, Gray S, Lland P, 1998. Use of sap flow sensor to schedule vineyard irrigation. II. Effect of post-veraison water deficit on composition of Shiraz grapes. Am J Enol Vitic 49: 421-428.

Girona J, Marsal J, Mata M, Del Campo J, Basile B, 2009. Phenological sensitivity of berry growth and composition of Tempranillo grapevines (Vitis vinifera L.) to water stress. Aust J Grape Wine Res 15: 268-277. https://doi.org/10.1111/j.1755-0238.2009.00059.x

González-Neves G, Ferrer M, 2008. Efectos del sistema de conducción y del raleo de racimos en la composición de uvas Merlot. Agrociencia XII (2): 10-18.

Guidoni S, Allara P, Schubert A, 2002. Effect of cluster thinning on berry skin anthocyanin composition of Vitis vinifera cv. Nebbiolo. Am J Enol Vitic 53: 224-226.

Hardie WJ, Considine JA, 1976. Response of grapes to water stress in particular stages of development. Am J Enol Vitic 27: 55-61.

Intrigliolo DS, Castel JR, 2008. Effects of irrigation on the performance of grapevine cv. Tempranillo in Requena, Spain. Am J Enol Vitic 59 (1): 30-38.

Intrigliolo DS, Castel JR, 2011. Interactive effects of deficit irrigation and shoot and cluster thinning on grapevine cv. Tempranillo. Water relations, vine performance and berry and wine composition. Irrig Sci 29: 443-454. https://doi.org/10.1007/s00271-010-0252-2

Keller M, Mills LJ, Wample RL, Spayd S, 2005. Cluster thinning effects on three deficit-irrigated Vitis vinifera cultivars. Am J Enol Vitic 56: 91-103.

Keller M, Smithyman RP, Mills J, 2008. Interactive effects of deficit irrigation and crop load on Cabernet Sauvignon in an arid climate. Am J Enol Vitic 59 (3): 221-234.

Kennedy JA, Matthews MA, Waterhouse AL, 2000. Changes in grape seed polyphenols during fruit ripening. Phytochemistry 55: 77-85. https://doi.org/10.1016/S0031-9422(00)00196-5

Kennedy JA, Matthews MA, Waterhouse AL, 2002. Effect of maturity and vine water status on grape skin and wine flavonoids. Am J Enol Vitic 53: 268-274.

Matthews MA, Anderson MM, 1988. Fruit ripening in Vitis vinifera L.: responses to seasonal water deficits. Am J Enol Vitic 39: 313-320.

Matthews MA, Nuzzo V, 2007. Berry size and yield paradigm on grapes and wine quality. Acta Hort 754: 423-435. https://doi.org/10.17660/ActaHortic.2007.754.56

Molero de Ávila ME, Alarcón MV, Uriarte D, Mancha LA, Moreno D, Francisco-Morcillo J, 2019. Histochemical and immunohistochemical analysis of enzymes involved in phenolic metabolism during berry development in Vitis vinifera L. Protoplasma 256: 25-38. https://doi.org/10.1007/s00709-018-1278-1

Mota RVD, Souza CRD, Silva CPC, Freitas GDF, Shiga TM, Purgatto E, Regina MDA, 2010. Biochemical and agronomical responses of grapevines to alteration of source-sink ratio by cluster thinning and shoot trimming. Bragantia 69 (1): 17-25. https://doi.org/10.1590/S0006-87052010000100004

Naczk M, Shahidi F, 2004. Extraction and analysis of phenolics in food. J Chromatogr A 1054: 95-111. https://doi.org/10.1016/S0021-9673(04)01409-8

Niculcea M, Martinez-Lapuente L, Guadalupe Z, Sánchez-Díaz M, Morales F, Ayestarán B, Antolín MC, 2013. Effects of water-deficit irrigation on hormonal content and nitrogen compounds in developing berries of Vitis vinifera L. cv. Tempranillo. J Plant Growth Regul 32 (3): 551-563. https://doi.org/10.1007/s00344-013-9322-z

Ojeda H, Deloire A, Carbonneau A, 2001. Influence of water deficits on grape berry growth. Vitis 40: 141-145.

Ojeda H, Andary C, Kraeva E, Carbonneau A, Deloire A, 2002. Influence of pre- and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. Am J Enol Vitic 53: 261-267.

Ollé D, Guiraud JL, Souquet JM, Terrier N, Ageorges A, Cheynier V, Verries C, 2011. Effect of pre- and post-veraison water deficit on proanthocyanidin and anthocyanin accumulation during Shiraz berry development. Aust J Grape Wine Res 17: 90-100. https://doi.org/10.1111/j.1755-0238.2010.00121.x

Ortega-Farias S, Salazar-Mejías R, Moreno-Simunovic Y, 2007. Effect of different levels of pruning and water application on vegetative growth, yield and berry composition in grapes cv. Cabernet Sauvignon. Agricultura Técnica 67 (4): 401-413. https://doi.org/10.4067/S0365-28072007000400008

Pastore C, Zenoni S, Fasoli M, Pezzotti M, Tornielli GB, Filippetti I, 2013. Selective defoliation affects plant growth, fruit transcriptional ripening program and flavonoid metabolism in grapevine. BMC Plant Biol 13 (1): 30. https://doi.org/10.1186/1471-2229-13-30

Picón-Toro J, González-Dugo V, Uriarte D, Mancha LA, Testi L, 2012. Effects of canopy size and water stress over the crop coefficient of a "Tempranillo" vineyard in south-western Spain. Irrig Sci 30 (5): 419-432. https://doi.org/10.1007/s00271-012-0351-3

Reynier A, 2002. Manual de viticultura. Ediciones Mundi-Prensa, Madrid.

Reynolds AG, Edwards CG, Wardle DA, Webster DR, Dever M, 1994a. Shoot density affects "Riesling" grapevines. I. Vine performance. J Amer Soc Hort Sci 119: 874-880. https://doi.org/10.21273/JASHS.119.5.874

Reynolds AG, Edwards CG, Wardle DA, Webster DR, Dever M, 1994b. Shoot density affects "Riesling" grapevines. II. Wine composition and sensory response. J Amer Soc Hort Sci 119: 881-892. https://doi.org/10.21273/JASHS.119.5.881

Risco D, 2012. Riego deficitario controlado y deshojado temprano en la vid (Vitis vinifera L.) var. Tempranillo en Utiel-Requena. Efectos sobre la respuesta agronómica y la calidad de la uva. Thesis, University Polytechnic of Valencia.

Roby G, Harbertson JF, Adams DA, Matthews MA, 2004. Berry size and vine water deficits as factors in winegrape composition: anthocyanins and tannins. Aust J Grape Wine Res 10: 100-107. https://doi.org/10.1111/j.1755-0238.2004.tb00012.x

Roggero JP, Coen S, Ragonnet B, 1986. High performance liquid chromatography survey on changes in pigment content in ripening grapes of Syrah. An approach to anthocyanin metabolism. Am J Enol Vitic 37: 77-83.

Romero P, Fernández-Fernández JI, Martinez-Cutillas A, 2010. Physiological thresholds for efficient regulated deficit-irrigation management in winegrapes grown under semiarid conditions. Am J Enol Vitic 61 (3): 300-312.

Ryan JM, Revilla E, 2003. Anthocyanin composition of Cabernet Sauvignon and Tempranillo grapes at different stages of ripening. J Agric Food Chem 51: 3372-3378. https://doi.org/10.1021/jf020849u

Santesteban LG, Miranda C, Royo JB, 2011. Thinning intensity and water regime affect the impact cluster thinning has on grape quality. Vitis 50 (4): 159-165.

Singleton VL, Rossi JA, 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16 (3): 144-158.

Tarara JM, Lee J, Spayd SE, Scagel CF, 2008. Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. Am J Enol Vitic 59 (3): 235-247.

Valdés ME, Moreno D, Gamero E, Uriarte D, Prieto MH, Manzano R, Picon J, Intrigliolo DS, 2009. Effects of cluster thinning and irrigation amount on water relations, growth, yield and fruit and wine composition of Tempranillo grapes in Extremadura (Spain). J Int Sci Vigne Vin 43 (2): 67-76. https://doi.org/10.20870/oeno-one.2009.43.2.799

Williams LE, Baeza P, 2007. Relationships among ambient temperature and vapor pressure deficit and leaf and stem water potentials of fully irrigated, field-grown grapevines. Am J Enol Vitic 58 (2): 173-181.

Published
2020-09-22
How to Cite
Molero de Ávila, M. E., Alarcón, M. V., Moreno, D., Mancha, L. A., Uriarte, D., & Francisco-Morcillo, J. (2020). Effects of irrigation and shoot thinning on the size and phenolics content of developing grape berries (Vitis vinifera L. cv. Tempranillo). Spanish Journal of Agricultural Research, 18(2), e0803. https://doi.org/10.5424/sjar/2020182-15773
Section
Plant physiology