Vaccination programs, parity, and calving season as factors affecting the risk of fetal losses and mummified fetuses in Holstein cows

  • Miguel Mellado Autonomous Agrarian University Antonio Narro, Dept. of Animal Nutrition, Saltillo
  • Omar Nájera Autonomous Agrarian University Antonio Narro, Dept. of Animal Nutrition, Saltillo
  • Jesús Mellado Autonomous Agrarian University Antonio Narro, Dept. of Animal Nutrition, Saltillo
  • José E. García Autonomous Agrarian University Antonio Narro, Dept. of Animal Nutrition, Saltillo
  • Ulises Macías-Cruz Institute of Agricultural Sciences, Autonomous University of Baja California, Mexicali
  • Álvaro F. Rodríguez Autonomous Agrarian University Antonio Narro, Dept. of Animal Nutrition, Saltillo
  • Cesar A. Meza-Herrera University Regional Unit of Arid Zones, Autonomous University Chapingo, Bermejillo
  • Leonel Avendaño-Reyes Institute of Agricultural Sciences, Autonomous University of Baja California, Mexicali
Keywords: bovine abortion, clostridial vaccination, Brucella abortus RB51 vaccine, repeated abortion, Leptospira vaccine

Abstract

Aim of the study: To investigate vaccination programs, parity, and calving season as factors affecting the risk of abortion and mummified fetuses in Holstein cows.

Area of study: Hot zone of Northeast Mexico.

Material and methods: Multiple logistic regression models were used to examine the relationship between peripartum disorders, parity, previous occurrence of abortion, season of calving, vaccination program, incidence of abortion, and mummified fetuses in Holstein cows.

Main results: For 7014 pregnancies (2886 cows), the percentage of cows aborting and having mummified fetuses was 17.7% and 1.1%, respectively. As the number of brucellosis vaccinations increased, the incidence of abortion increased (10.4% for a single vaccination and 38.0% for 6 accumulated vaccinations). Abortion for cows having 1-2 previous abortions (56%) and >2 abortions (77%) was fivefold and sevenfold greater (p<0.01), respectively, than that for cows without previous abortion. Other important risk factors for abortion were number of calvings (19.8% for nulliparous and primiparous vs. 13.8% for >3 parturitions; OR=1.7, p<0.01), leptospirosis vaccine application <55 days postpartum (dpp; OR=1.3, p<0.05), viral vaccine application >37 dpp (OR=1.3, p<0.01), brucellosis vaccine application >20 dpp (OR=1.6, p<0.01), and no application of clostridial vaccine (OR=3.7, p<0.01). Significant risk factors for mummified fetuses were application of ≥3 brucellosis vaccinations (OR=3.3, p<0.01), no application of 10-way clostridial vaccine (OR=2.3, p<0.01), >2 previous abortions (OR=18.4, p<0.01), and calving in autumn (OR=0.4, compared to winter, p<0.05).

Research highlights: Risk of abortion and mummified fetuses in Holstein cows has been found to be related to vaccination programs.

Downloads

Download data is not yet available.

References

Albuja C, Ortiz O, López C, Hernández-Cerón J, 2019. Economic impact of pregnancy loss in an intensive dairy farming system. Vet Méx 6(1): 1-8. https://doi.org/10.22201/fmvz.24486760e.2019.1.572

Alfieri AA, Alfieri AF, 2017. Infectious diseases that impact the bovine reproduction. Rev Bras Reprod Anim 41: 133-139.

Anderson ML, 2007. Infectious causes of bovine abortion during mid-to late-gestation. Theriogenology 68: 474-486. https://doi.org/10.1016/j.theriogenology.2007.04.001

Andreu-Vázquez C, García-Ispierto I, Ganau S, Fricke PM, López-Gatius F, 2012. Effects of twinning on the subsequent reproductive performance and productive lifespan of high-producing dairy cows. Theriogenology 789: 2061-2070. https://doi.org/10.1016/j.theriogenology.2012.07.027

Barański W, Zduńczyk S, Janowski T, 2012. Late embryonic and foetal losses in eight dairy herds in north-east Poland. Polish J Vet Sci 15: 735-739. https://doi.org/10.2478/v10181-012-0112-5

Borel N, Frey CF, Gottstein B, Hilbe M, Pospischil A, Franzoso FD, Waldvogel A, 2014. Laboratory diagnosis of ruminant abortion in Europe. Vet J 200: 218-229. https://doi.org/10.1016/j.tvjl.2014.03.015

Boyko EJ, 2013. Observational research - Opportunities and limitations. J Diabetes Compl 27(6): 642-648. https://doi.org/10.1016/j.jdiacomp.2013.07.007

Brozos CN, Lazaridis L, Karagiannis I, Kiossis E, Tsousis G, Psychas V, Giadinis ND, 2012. Prolonged dystocia, uterine necrosis, and ovariohysterectomy in a Chios ewe. Tur J Vet Anim Sci 36: 211-213.

Chebel RC, Mendonça LGD, Baruselli PS, 2018. Association between body condition score change during the dry period and postpartum health and performance. J Dairy Sci 101: 4595-4614. https://doi.org/10.3168/jds.2017-13732

Cheong SH, Filho OGS, Absalon-Medina VA, Schneider A, Butler WR, Gilbert RO, 2017. Uterine and systemic inflammation influences ovarian follicular function in postpartum dairy cows. PLoS ONE 12(5): e0177356. https://doi.org/10.1371/journal.pone.0177356

Corbellini LG, Pescador CA, Frantz F, Wunder E, Steffen D, Smith DR, Driemeier D, 2006. Diagnostic survey of bovine abortion with special reference to Neospora caninum infection: Importance, repeated abortion and concurrent infection in aborted fetuses in Southern Brazil. Vet J 172: 114-120. https://doi.org/10.1016/j.tvjl.2005.03.006

Crowe MA, Diskin MG, Williams EJ, 2014. Parturition to resumption of ovarian cyclicity: comparative aspects of beef and dairy cows. Animal 8: 1-14. https://doi.org/10.1017/S1751731114000251

De Vries A, 2006. Economic value of pregnancy in dairy cattle. J Dairy Sci 89: 3876-3885. https://doi.org/10.3168/jds.S0022-0302(06)72430-4

Diskin M, Waters S, Parr M, Kenny D, 2016. Pregnancy losses in cattle: potential for improvement. Reprod Fertil Dev 28: 83-93. https://doi.org/10.1071/RD15366

Dorneles EM, Teixeira-Carvalho A, Araujo MS, Lima GK, Martins-Filho OA, Sriranganathan N, Lage AP, 2014. T lymphocytes subsets and cytokine pattern induced by vaccination against bovine brucellosis employing S19 calfhood vaccination and adult RB51 revaccination. Vaccine 32: 6034-6038. https://doi.org/10.1016/j.vaccine.2014.08.060

Drost M, 2007. Complications during gestation in the cow. Theriogenology 68: 487-491. https://doi.org/10.1016/j.theriogenology.2007.04.023

Dutt R, Dalal J, Singh G, Gahalot SC, 2018 Management of fetal mummification/maceration through left flank caesarean section in cows - study of four cases. Adv Anim Vet Sci 6: 12-16. https://doi.org/10.17582/journal.aavs/2018/6.1.12.16

Esposito G, Irons PC, Webb EC, Chapwanya A, 2014. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim Reprod Sci 144: 60-71. https://doi.org/10.1016/j.anireprosci.2013.11.007

Flores J, García JE, Mellado J, Gaytán L, De Santiago A, Mellado M, 2019. Effect of growth hormone on milk yield and reproductive performance of subfertile Holstein cows during extended lactations. Span J Agric Res 17 (1): e0403. https://doi.org/10.5424/sjar/2019171-13842

Fluegel Dougherty AM, Cornish TE, O'Toole D, Boerger-Fields AM, Henderson OL, Mills KW, 2013. Abortion and premature birth in cattle following vaccination with Brucella abortus strain RB51. J Vet Diag Invest 25: 630-635. https://doi.org/10.1177/1040638713499570

Forar A, Gay J, Hancok D, 1995. The frequency of endemic fetal loss in dairy cattle: a review. Theriogenology 43: 989-1000. https://doi.org/10.1016/0093-691X(95)00063-E

García-Ispierto I, López-Gatius F, Santolaria P, Yániz JL, Nogareda C, López-Béjar M, De Rensis F, 2006. Relationship between heat stress during the peri-implantation period and early fetal loss in dairy cattle. Theriogenology 65: 799-807. https://doi.org/10.1016/j.theriogenology.2005.06.011

Garcia-Ispierto I, López-Gatius F, 2019. Abortion in dairy cattle with advanced twin pregnancies: Incidence and timing. Reprod Dom Anim 54: 50-53. https://doi.org/10.1111/rda.13510

García-Vázquez Z, Rosario-Cruz R, Ramos-Aragón A, Cruz-Vázquez C, Mapes G, 2005. Neospora caninum seropositivity and association with abortions in dairy cows in Mexico. Vet Parasitol 134: 61-65. https://doi.org/10.1016/j.vetpar.2005.07.007

Gehrke M, Zbylut J, 2011. Factors connected with pregnancy loss in dairy cows. Bull Vet Inst Pulawy 553: 457-464.

Gilbert RO, 2012. The effects of endometritis on the establishment of pregnancy in cattle. Reprod Fert Dev 24: 252-257. https://doi.org/10.1071/RD11915

Grimard B, Freret S, Chevallier A, Pinto A, Ponsart C, Humblot P, 2006. Genetic and environmental factors influencing first service conception rate and late embryonic/foetal mortality in low fertility dairy herds. Anim Reprod Sci 91: 31-44. https://doi.org/10.1016/j.anireprosci.2005.03.003

Grooms DL, 2004. Reproductive consequences of infection with bovine viral diarrhea virus. Vet Clin N Am-Food A Prac 20: 5-19. https://doi.org/10.1016/j.cvfa.2003.11.006

Hammer AS, Andresen L, Aalbæk B, Damborg P, Weiss V, Christiansen ML, Selsing S, Bahl MI, 2017. Abortion and mortality in farm mink Neovison vison associated with feed-born Clostridium limosum. Vet Microbiol 203: 229-233. https://doi.org/10.1016/j.vetmic.2017.03.017

Jousan FD, Drost M, Hansen PJ, 2005. Factors associated with early and mid-to-late fetal loss in lactating and nonlactating Holstein cattle in a hot climate. J Anim Sci 83: 1017-1022. https://doi.org/10.2527/2005.8351017x

Keshavarzi H, Sadeghi-Sefidmazgi A, Kristensen AR, Stygar AH, 2017. Abortion studies in Iranian dairy herds: I. Risk factors for abortion. Livest Sci 195: 45-52. https://doi.org/10.1016/j.livsci.2016.11.004

Krause ART, Pfeifer LFM, Montagner P, Weschenfelder MM, Schwegler E, Lima ME, et al., 2014. Associations between resumption of postpartum ovarian activity, uterine health and concentrations of metabolites and acute phase proteins during the transition period in Holstein cows. Anim Reprod Sci 145: 8-14. https://doi.org/10.1016/j.anireprosci.2013.12.016

Kumar A, Saxena A, 2018. Clinical management of fetal mummification in a cow: a case report. Ind Vet J 95: 81-82.

Labèrnia J, López-Gatius F, Santolaria P, López-Béjar M, Rutllant J, 1996. Influence of management factors on pregnancy attrition in dairy cattle. Theriogenology 45: 1247-1253. https://doi.org/10.1016/0093-691X(96)00079-9

Lee JI, Kim IH, 2007. Pregnancy loss in dairy cows: The contributing factors, the effects on reproductive performance and the economic impact. J Vet Sci 83: 283-288. https://doi.org/10.4142/jvs.2007.8.3.283

Lefebvre RC, Saint-Hilaire É, Morin I, Couto GB, Francoz D, Babkine M, 2009. Retrospective case study of fetal mummification in cows that did not respond to prostaglandin F2α treatment. Can Vet J 50: 71-76.

Longbottom D, Sait M, Livingstone M, Laroucau K, Sachse K, Harris SR, Thomson N, Seth-Smith, HMB, 2018. Genomic evidence that the live Chlamydia abortus vaccine strain 1B is not attenuated and has the potential to cause disease. Vaccine 25: 3593-3598. https://doi.org/10.1016/j.vaccine.2018.05.042

López-Gatius F, 2012. Factors of a non-infectious nature affecting fertility after artificial insemination in lactating dairy cows. A review. Theriogenology 77: 1029-1041. https://doi.org/10.1016/j.theriogenology.2011.10.014

López-Gatius F, Santolaria P, Yániz JL, Garbayo JM, Hunter RHF, 2004. Timing of early foetal loss for single and twin pregnancies in dairy cattle. Reprod Dom Anim 39: 429-433. https://doi.org/10.1111/j.1439-0531.2004.00533.x

López-Gatius F, Szenci O, Bech-Sábat G, García-Ispierto I, Serrano B, Santolaria P, Yániz J, 2009. Factors of non-infectious nature affecting late embryonic and early foetal loss in high producing dairy herds in north-eastern Spain. Magy Allator Lapja, 131: 515-531.

Madureira AML, Silper BF, Burnett TA, Polsky L, Cruppe LH, Veira DM, et al., 2015. Factors affecting expression of estrus measured by activity monitors and conception risk of lactating dairy cows. J Dairy Sci 98: 7003-7014. https://doi.org/10.3168/jds.2015-9672

Mann S, Sipka A, Leal Yepes FA, Nydam DV, Overton TR, Wakshlag JJ, 2018. Nutrient-sensing kinase signaling in bovine immune cells is altered during the postpartum nutrient deficit: A possible role in transition cow inflammatory response. J Dairy Sci 101: 9360-9370. https://doi.org/10.3168/jds.2018-14549

Markusfeld-Nir O, 1997. Epidemiology of bovine abortions in Israeli dairy herds. Prev Vet Med 31: 245-255. https://doi.org/10.1016/S0167-5877(96)01142-7

McDougall S, Rhodes FM, Verkerk G, 2005. Pregnancy loss in dairy cattle in the Waikato region of New Zealand. N Z Vet J 53: 279-287. https://doi.org/10.1080/00480169.2005.36561

Medina-Esparza LE, De Luna-Oseguera R, Vitela-Mendoza, IV, Cruz-Vázquez C, 2018. Detection of Neospora caninum from slaughtered dairy cattle in Aguascalientes, Mexico. Rev Mex Cienc Pecu 9: 408-419. https://doi.org/10.22319/rmcp.v9i3.4538

Mee JF, 1992. Epidemiology of abortion in Irish dairy cattle on six research farms. Irish J Agric Food Res 31: 13-21.

Mee JF, 2020. Investigation of bovine abortion and stillbirth/perinatal mortality - similar diagnostic challenges, different approaches. Irish Vet J 73:20. https://doi.org/10.1186/s13620-020-00172-0

Megid J, Mathias LA, Robles C, 2010. Clinical manifestations of brucellosis in domestic animals and humans. Open Vet Sci J 4: 119-126. https://doi.org/10.2174/1874318801004010119

Melendez P, Ilha M, Woldemeskel M, Graham J, Coarsey M, Baughman D, et al., 2020. An outbreak of Neospora caninum abortion in a dairy herd from the State of Georgia, United States. Vet Med Sci 7 (1): 141-147. https://doi.org/10.1002/vms3.346

Mellado M, López R, de Santiago A, Veliz FG, Macías-Cruz U, Avendaño-Reyes L, García JE, 2016. Climatic conditions, twining and frequency of milking as factors affecting the risk of fetal losses in high-yielding Holstein cows in a hot environment. Trop Anim Health Prod 48: 1247-1252. https://doi.org/10.1007/s11250-016-1084-8

Mellado M, Macías-Cruz U, Avendaño-Reyes L, Véliz FG, Gaytán L, García, JE, Rodríguez AF, 2019. Milk yield, periparturient diseases and body condition score as factors affecting the risk of fetal losses in high-yielding Holstein cows. Span J Agric Res 17 (2) e0404. https://doi.org/10.5424/sjar/2019172-13206

Moore DA, Overton MW, Chebel RC, Truscott ML, BonDurant RH, 2005. Evaluation of factors that affect embryonic loss in dairy cattle. J Am Vet Med Assoc 226: 1112- 1118. https://doi.org/10.2460/javma.2005.226.1112

Moore SG, Fair T, Lonergan P, Butler ST, 2014. Genetic merit for fertility traits in Holstein cows: IV Transition period, uterine health, and resumption of cyclicity. J Dairy Sci 97: 2740-2752. https://doi.org/10.3168/jds.2013-7278

Mulligan FJ, Doherty ML, 2008. Production diseases of the transition cow. Vet J 176: 3-9. https://doi.org/10.1016/j.tvjl.2007.12.018

Newcomer BW, Chamorro MF, Walz PH, 2017. Vaccination of cattle against bovine viral diarrhea virus. Vet Microbiol 206: 78-83. https://doi.org/10.1016/j.vetmic.2017.04.003

Norman HD, Miller RH, Wright JR, Hutchison JL, Olson KM, 2012. Factors associated with frequency of abortions recorded through Dairy Herd Improvement test plans. J Dairy Sci 957: 4074-4084. https://doi.org/10.3168/jds.2011-4998

Norton JH, Lisle AT, Tranter WP, Campbell RSF, 1989. A farming systems study of abortion in dairy cattle on the Atherton Tableland I reproductive performance. Aust Vet J 66: 161-163. https://doi.org/10.1111/j.1751-0813.1989.tb09791.x

Olsen SC, Stoffregen WS, 2005. Essential role of vaccines in brucellosis control and eradication programs for livestock. Expert Rev Vaccines 4: 915-928. https://doi.org/10.1586/14760584.4.6.915

Ordell A, Unnerstad HE, Nyman A, Gustafsson H, Bage R, 2016. A longitudinal cohort study of acute puerperal metritis cases in Swedish dairy cows. Acta Vet Scand 58: 79. https://doi.org/10.1186/s13028-016-0257-9

Ortega J, Daft B, Assis RA, Kinde H, Anthenill L, Odani J, Uzal FA, 2007. Infection of internal umbilical remnant in foals by Clostridium sordellii. Vet Pathol 44: 269-275. https://doi.org/10.1354/vp.44-3-269

Pabón M, López-Gatius F, García-Ispierto I, Bech-Sàbat G, Nogareda C, Almería S, 2007. Chronic Neospora caninum infection and repeat abortion in dairy cows: A 3-year study. Vet Parasitol 147: 40-46. https://doi.org/10.1016/j.vetpar.2007.03.017

Palmer MV, Cheville NF, Jensen AE, 1996. Experimental infection of pregnant cattle with the vaccine candidate Brucella abortus strain RB51: pathologic, bacteriologic, and serologic findings. Vet Pathol 33: 682-691. https://doi.org/10.1177/030098589603300607

Reichel MP, Wahl LC, Hill FI, 2018. Review of diagnostic procedures and approaches to infectious causes of reproductive failures of cattle in Australia and New Zealand. Front Vet Sci 5: 222. https://doi.org/10.3389/fvets.2018.00222

Rodning SP, Marley MS, Zhang Y, Eason AB, Nunley CL, Walz PH, et al., 2010. Comparison of three commercial vaccines for preventing persistent infection with bovine viral diarrhea virus. Theriogenology 73: 1154-1163. https://doi.org/10.1016/j.theriogenology.2010.01.017

Santos JEP, Bisinotto RS, Ribeiro ES, 2016. Mechanisms underlying reduced fertility in anovular dairy cows. Theriogenology 86: 254-262. https://doi.org/10.1016/j.theriogenology.2016.04.038

Sanz C, Sáez JL, Alvarez J, Cortes M, Pereira G, Reyes A, et al., 2010. Mass vaccination as a complementary tool in the control of a severe outbreak of bovine brucellosis due to Brucella abortus in Extremadura, Spain. Prev Vet Med 97: 119-125. https://doi.org/10.1016/j.prevetmed.2010.08.003

Sheldon IM, Lewis GS, LeBlanc S, Gilbert RO, 2006. Defining postpartum uterine disease in cattle. Theriogenology 65: 1516-1530. https://doi.org/10.1016/j.theriogenology.2005.08.021

Thurmond MC, Picanso JP, Jameson CM, 1990. Considerations for use of descriptive epidemiology to investigate fetal loss in dairy cows. J Am Vet Med Assoc 197: 1305-1312.

Uzal FA, 2012. Evidence-based medicine concerning efficacy of vaccination against Clostridium chauvoei infection in cattle. Vet Clin N Am-Food A Prac 28: 71-77. https://doi.org/10.1016/j.cvfa.2011.12.006

Uzal FA, Samartino L, Schurig G, Carrasco A, Nielsen K, Cabrera RF, Taddeo HR, 2000. Effect of vaccination with Brucella abortus strain RB51 on heifers and pregnant cattle. Vet Res Commun 24: 143-151. https://doi.org/10.1023/A:1006468713614

Van Campen H, Vorpahl P, Huzurbazar S, Edwards J, Cavender J, 2000. A case report: evidence for type 2 bovine viral diarrhea virus BVDV-associated disease in beef herds vaccinated with a modified-live type 1 BVDV vaccine. J Vet Diagn Invest 12: 263-265. https://doi.org/10.1177/104063870001200312

Van Metre DC, Kennedy GA, Olsen SC, Hansen GR, Ewalt DR, 1999. Brucellosis induced by RB51 vaccine in a pregnant heifer. J Am Vet Med Assoc 215: 1491-1493.

Vidal S, Kegler K, Posthaus H, Perreten V, Rodriguez-Campos S, 2017. Amplicon sequencing of bacterial microbiota in abortion material from cattle. Vet Res 48: 64. https://doi.org/10.1186/s13567-017-0470-1

Vojtek I, Buchy P, Doherty TM, Hoet B, 2019. Would immunization be the same without cross-reactivity? Vaccine 37: 539-549. https://doi.org/10.1016/j.vaccine.2018.12.005

Williams EJ, Fischer DP, Noakes DE, England GC, Rycroft A, Dobson H, Sheldon IM, 2007. The relationship between uterine pathogen growth density and ovarian function in the postpartum dairy cow. Theriogenology 68: 549-559. https://doi.org/10.1016/j.theriogenology.2007.04.056

Wilson DJ, Orsel K, Waddington J, Rajeev M, Sweeny AR, Joseph T, Grigg ME, Raverty SA, 2016. Neospora caninum is the leading cause of bovine fetal loss in British Columbia, Canada. Vet Parasitol 218: 46-51. https://doi.org/10.1016/j.vetpar.2016.01.006

Wolf-Jäckel GA, Hansen MS, Larsen G, Holm E, Agerholm JS, Jensen TK, 2020. Diagnostic studies of abortion in Danish cattle 2015-2017. Acta Vet Scand 62: 1. https://doi.org/10.1186/s13028-019-0499-4

Yazdi HS, Kafi M, Haghkhah M, Tamadon A, Behroozikhah AM, Ghane M, 2009. Abortions in pregnant dairy cows after vaccination with Brucella abortus strain RB51. Vet Rec 165: 570-571. https://doi.org/10.1136/vr.165.19.570

Published
2021-08-12
How to Cite
Mellado, M., Nájera, O., Mellado, J., García, J. E., Macías-Cruz, U., Rodríguez, Álvaro F., Meza-Herrera, C. A., & Avendaño-Reyes, L. (2021). Vaccination programs, parity, and calving season as factors affecting the risk of fetal losses and mummified fetuses in Holstein cows. Spanish Journal of Agricultural Research, 19(3), e0402. https://doi.org/10.5424/sjar/2021193-16690
Section
Animal breeding, genetics and reproduction

Most read articles by the same author(s)