Effect of a veterinary antibiotic on the growth of regularly consumed Lebanese plants

Keywords: rhizospheric bacteria, phytotoxicity, plant productivity, organic agriculture, environmental safety, MALDI-TOF

Abstract

Aim of study: To investigate the effect of a combined commercial veterinary antibiotic, commonly sold, in different concentrations, on Lens culinaris Medik., Cicer arietinum L., Eruca sativa Mill. and Lepidium sativum L., on germination rates, plant growth traits and rhizospheric bacterial size and diversity.

Area of study: Lebanon, soil origin from South Lebanon.

Material and methods: The antibiotic phytotoxicity was assayed using seed germination and plant growth tests in a pot experiment conducted in a controlled glasshouse. Rhizospheric bacteria were isolated and identified by assisted laser desorption/ionization spectrometry (MALDI-TOF).

Main results: The antibiotic used was species-dependent and negatively affected the plant growth variables causing decrease in root growth and total biomass weight. Regarding crop species, the antibiotic impact was dose-dependent. Arugula and cress were found to be the most sensitive in the tested concentrations, affecting their productivity. In lentil and chickpea, the effects disappeared after the fourth and the first week respectively. In addition, root microbial community was negatively affected in the first 4 weeks in lentil and chickpea. A diversity of growth promoting rhizobacterial genera were identified where some rhizospheric bacteria were more sensitive, while others were resistant to the used antibiotic concentrations.

Research highlights: Results highlight the presence of resistant bacteria even in virgin soils. They implicate that the presence of antibiotics in soil leads to biomass reduction in leafy species decreasing the productive capacity of the crops and draw attention to possible transmission to humans consuming these leaves.

Downloads

Download data is not yet available.

References

Agathokleous E, Belz RG, Kitao M et al., 2019. Does the root to shoot ratio show a hormetic response to stress? An ecological and environmental perspective. J Forest Res 30(5): 1569-1580. https://doi.org/10.1007/s11676-018-0863-7

Ali-Shtayeh MS, Jamous RM, Al-Shafie' JH, Elgharabah WA, Kherfan FA, Qarariah KH et al., 2008. Traditional knowledge of wild edible plants used in Palestine (Northern West Bank): A comparative study J Ethnobiol Ethnomed 4(1): 13. https://doi.org/10.1186/1746-4269-4-13

Arrebola E, Tienda S, Vida C, de Vicente A, Cazorla FM, 2019. Fitness features involved in the biocontrol interaction of Pseudomonas chlororaphis with host plants: The case study of PcPCL1606. Front Microbiol 10: 1-8. https://doi.org/10.3389/fmicb.2019.00719

Awad YM, Kim KR, Kim SC, Kim K, Lee SR, Lee SS et al., 2015. Monitoring antibiotic residues and corresponding antibiotic resistance genes in an agroecosystem. J Chemistry 2015: 974843. https://doi.org/10.1155/2015/974843

Azanu D, Mortey C, Darko G, Weisser JJ, Styrishave B, Abaidoo RC, 2016. Uptake of antibiotics from irrigation water by plants. Chemosphere 157: 107-114. https://doi.org/10.1016/j.chemosphere.2016.05.035

Badri DV, Vivanco JM, 2009. Regulation and function of root exudates. Plant Cell Environ 32(6): 666-681. https://doi.org/10.1111/j.1365-3040.2009.01926.x

Bártíková H, Radka P, Lenka S, 2016. Veterinary drugs in the environment and their toxicity to plants. Chemosphere 144: 2290-2301. https://doi.org/10.1016/j.chemosphere.2015.10.137

Batchelder AR, 1982. Chlortetracycline and oxytetracycline effects on plant growth and development in soil systems. J Environ Qual 11(4): 675-78. https://doi.org/10.2134/jeq1982.00472425001100040023x

Berendsen RL, Pieterse CM, Bakker PA, 2012. The rhizosphere microbiome and plant health. Trends Plant Sci 17(8): 478-486. https://doi.org/10.1016/j.tplants.2012.04.001

Boxall AB, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS, 2006. Uptake of veterinary medicines from soils into plants. J Agric Food Chem 54(6): 2288-2297. https://doi.org/10.1021/jf053041t

Carvalho PN, Basto MC, Almeida CM, Brix H, 2014. A review of plant-pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands. Environ Sci Pollut Res 21(20): 11729-11763. https://doi.org/10.1007/s11356-014-2550-3

Cavaglieri L, Orlando J, Etcheverry M, 2009. Rhizosphere microbial community structure at different maize plant growth stages and root locations. Microbiol Res 164(4): 391-399. https://doi.org/10.1016/j.micres.2007.03.006

Chen HR, Rairat T, Loh SH, Wu YC, Vickroy TW, Chou CC, 2017. Assessment of veterinary drugs in plants using pharmacokinetic approaches: The absorption, distribution and elimination of tetracycline and sulfamethoxazole in ephemeral vegetables. PLoS One 12(8): e0183087. https://doi.org/10.1371/journal.pone.0183087

Cheong MS, YoonY, Kim JW, Hong YK, Kim SC, Lee YB, 2020. Chlortetracycline inhibits seed germination and seedling growth in Brassica campestris by disrupting H2O2 signaling. Appl Biol Chem 63(1): 1-8. https://doi.org/10.1186/s13765-019-0484-7

Chien SH, Menon RG, 1996. Dilution effect of plant biomass on plant cadmium concentration as induced by application of phosphate fertilizers. In: Fertilizers and environment. Developments in plant and soil sciences, 66th ed; Rodriguez-Barrueco C (Ed), Dordrecht. pp. 437-442. https://doi.org/10.1007/978-94-009-1586-2_74

Cycoń M, Mrozik A, Piotrowska-Seget Z, 2019. Antibiotics in the soil environment-Degradation and their impact on microbial activity and diversity. Front Microbiol 10: 338. https://doi.org/10.3389/fmicb.2019.00338

Dandachi I, Sokhn ES, Dahdouh EA, Azar E, El-Bazzal B, Rolain JM, Daoud Z, 2018. Prevalence and characterization of multi-drug-resistant gram-negative Bacilli isolated from Lebanese poultry: A nationwide study. Front Microbiol 9: 1-11. https://doi.org/10.3389/fmicb.2018.00550

Daoud Z, 2018. Antimicrobial resistance in the one health concept in Lebanon. J Infect Dev Ctries 12(02.1): 2S. https://doi.org/10.3855/jidc.10201

Diaz-Sanchez S, Moscoso S, Solís de los Santos F, Andino A; Hanning I, 2015. Antibiotic use in poultry: a driving force for organic poultry production. Food Prot Trends 35(6): 440-447.

Ding C, He J, 2010. Effect of antibiotics in the environment on microbial populations. Appl Microbiol Biotechnol 87(3): 925-941. https://doi.org/10.1007/s00253-010-2649-5

Dodgen LK, Ueda A, Wu X, Parker DR, Gan J, 2015. Effect of transpiration on plant accumulation and translocation of PPCP/EDCs. Environ Pollut 198: 144-153. https://doi.org/10.1016/j.envpol.2015.01.002

Du L, Liu W, 2012. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A Review. Agron Sustain Dev 32(2): 309-327. https://doi.org/10.1007/s13593-011-0062-9

Eggen T, Asp TN, Grave K, Hormazabal V, 2011. Uptake and translocation of metformin, ciprofloxacin and narasin in forage- and crop plants. Chemosphere 85(1): 26-33. https://doi.org/10.1016/j.chemosphere.2011.06.041

Farkas MH, Mojica ER, Patel M, Aga DS, Berry JO, 2009. Development of a rapid biolistic assay to determine changes in relative levels of intracellular calcium in leaves following tetracycline uptake by pinto bean plants. Analyst 134(8): 1594-1600. https://doi.org/10.1039/b902147g

Füzy A, Kovács R, Cseresnyés I, Parádi I, Szili-Kovács T, Kelemen B et al., 2019. Selection of plant physiological parameters to detect stress effects in pot experiments using principal component analysis. Acta Physiol Plant 41(5): 1-10. https://doi.org/10.1007/s11738-019-2842-9

Gomes MP, Gonçalves CA, de Brito JCM, et al., 2017. Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.): Implications for energy metabolism and antibiotic-uptake ability. J Hazard Mater 328: 140-149. https://doi.org/10.1016/j.jhazmat.2017.01.005

Gomes MP, Richardi VS, Bicalho EM, da Rocha DC, Navarro-Silva MA, Soffiatti P, et al., 2019. Effects of ciprofloxacin and roundup on seed germination and root development of maize. Sci Total Environ 651(2): 2671-2678. https://doi.org/10.1016/j.scitotenv.2018.09.365

Gomes MP, Moreira Brito JC, Cristina Rocha D, Navarro-Silva MA, Juneau P, 2020. Individual and combined effects of amoxicillin, enrofloxacin and oxytetracycline on Lemna minor physiology. Ecotoxicol Environ Saf 203: 111025. https://doi.org/10.1016/j.ecoenv.2020.111025

González L, González-Vilar M, 2001. Determination of relative water content. In: Handbook of plant ecophysiology techniques; Reigosa Roger MJ (Ed), Dordrecht. pp: 207-212. https://doi.org/10.1007/0-306-48057-3_14

Gothwal R, Thhatikkonda S, 2015. Antibiotic pollution in the environment: A review. Clean 43(4): 479-489. https://doi.org/10.1002/clen.201300989

Gudda FO, Waigi MG, Odinga ES, Yang B, Carter L, Gao Y, 2020. Antibiotic-contaminated wastewater irrigated vegetables pose resistance selection risks to the gut microbiome. Environ Pollut 264: 114752. https://doi.org/10.1016/j.envpol.2020.114752

Hacquard S, Garrido-Oter R, González A et al., 2015. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17(5): 603-616. https://doi.org/10.1016/j.chom.2015.04.009

Hu X, Zhou Q, Luo Y, 2010. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, Northern China. Environ Pollut 158(9): 2992-2998. https://doi.org/10.1016/j.envpol.2010.05.023

ICARDA, 2019. Annual Report 2019. ICARDA Communication Team, Lebanon.

ISTA, 1993. International rules for seed testing. Seed Sci Technol 21: 296.

Jechalke S, Focks A, Rosendahl I et al., 2014a. Structural and functional response of the soil bacterial community to application of manure from difloxacin-treated pigs. FEMS Microbiol Ecol 87(1): 78-88. https://doi.org/10.1111/1574-6941.12191

Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K, 2014b. Fate and effects of veterinary antibiotics in soil. Trends Microbiol 22(9): 536-545. https://doi.org/10.1016/j.tim.2014.05.005

Kong WD, Zhu YG, Liang YC, Zhang J, et al., 2007. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environ Pollut 147(1): 187-193. https://doi.org/10.1016/j.envpol.2006.08.016

Lakshmanan V, Ray P, & Craven KD, 2017. Toward a resilient, functional microbiome: drought tolerance-alleviating microbes for sustainable agriculture. Methods Mol Biol 1631: 69-84. https://doi.org/10.1007/978-1-4939-7136-7_4

Liu F, Ying GG, Tao R, Zhao JL, Yang JF, Zhao LF, 2009. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ Pollut 157(5): 1636-1642. https://doi.org/10.1016/j.envpol.2008.12.021

Liu X, Lv Y, Xu K, Xiao X, Xi B, Lu S, 2018. Response of ginger growth to a tetracycline-contaminated environment and residues of antibiotic and antibiotic resistance genes. Chemosphere 201: 137-143. https://doi.org/10.1016/j.chemosphere.2018.02.178

Marschner P, Rengel Z, 2007. Contributions of rhizosphere interactions to soil biological fertility. In Soil biological fertility; Abbott L & DV Murphy (Eds), Dordrecht. pp. 81-98. https://doi.org/10.1007/978-1-4020-6619-1_5

Migliore L, Cozzolino S, Fiori M, 2003. Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52(7): 1233-1244. https://doi.org/10.1016/S0045-6535(03)00272-8

Migliore L, Godeas F, Filippis SPD, Mantovi P, Barchi D, Testa C, et al., 2010a. Hormetic effect(s) of tetracyclines as environmental contaminant on Zea mays. Environ Pollut 158(1): 129-134. https://doi.org/10.1016/j.envpol.2009.07.039

Migliore L, Rotini A, Cerioli NL, Cozzolino S, Fiori M, 2010b. Phytotoxic antibiotic sulfadimethoxine elicits a complex hormetic response in the weed Lythrum salicaria L. Dose-Response 8(4): 414-427. https://doi.org/10.2203/dose-response.09-033.Migliore

Minden V, Deloy A, Volkert AM, Leonhardt SD, Pufal G, 2017. Antibiotics impact plant traits, even at small concentrations. AoB Plants 9(2): plx010. https://doi.org/10.1093/aobpla/plx010

Mishra A, Chauhan PS, Chaudhry V, Tripathi M, Nautiyal CS, 2011. Rhizosphere competent Pantoea agglomerans enhances maize (Zea mays) and chickpea (Cicer arietinum L.) growth, without altering the rhizosphere functional diversity. Antonie van Leeuwenhoek 100(3): 405-413. https://doi.org/10.1007/s10482-011-9596-8

Mukhtar A, Manzoor M, Gul I, et al., 2020. Phytotoxicity of different antibiotics to rice and stress alleviation upon application of organic amendments. Chemosphere 258: 127353. https://doi.org/10.1016/j.chemosphere.2020.127353

Opriş O, Copaciu F, Loredana Soran M, Ristoiu D, Niinemets U, Copolovici LO, 2013. Influence of nine antibiotics on key secondary metabolites and physiological characteristics in Triticum aestivum: Leaf volatiles as a promising new tool to assess toxicity. Ecotoxicol Environ Saf 87: 70-79. https://doi.org/10.1016/j.ecoenv.2012.09.019

Pan M, Chu LM, 2016. Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops. Ecotoxicol Environ Saf 126: 228-237. https://doi.org/10.1016/j.ecoenv.2015.12.027

Pan M, Chu LM, 2017. Fate of antibiotics in soil and their uptake by edible crops. Sci Total Environ 599-600: 500-512. https://doi.org/10.1016/j.scitotenv.2017.04.214

Rahman MS, Hassan MM, Chowdhury S, 2021. Determination of antibiotic residues in milk and assessment of human health risk in Bangladesh. Heliyon 7(8): e07739. https://doi.org/10.1016/j.heliyon.2021.e07739

Rede D, Santos LHMLM, Ramos S et al., 2019. Individual and mixture toxicity evaluation of three pharmaceuticals to the germination and growth of Lactuca sativa seeds. Sci Total Environ 673: 102-109. https://doi.org/10.1016/j.scitotenv.2019.03.432

Riaz L, Mahmood T, Coyne MS et al., 2017. Physiological and antioxidant response of wheat (Triticum aestivum) seedlings to fluoroquinolone antibiotics. Chemosphere 177: 250-257. https://doi.org/10.1016/j.chemosphere.2017.03.033

Rocha DC, da Silva Rocha C, Tavares DS, de Morais Calado SL, Gomes MP, 2021. Veterinary antibiotics and plant physiology: an overview. Sci. Total Environ 767: 144902. https://doi.org/10.1016/j.scitotenv.2020.144902

Salameh P, Sacre H, Souheil H, Aline H, 2017. La résistance aux antibiotiques au liban. J Glob Antimicrob Resist 1: 27-32.

Sanusi NH, Ing Chia P, Nordin NFH, 2015. Isolation and identification of rhizospheric bacteria associated with lemongrass for potential bioremediation. J Teknol 77(24): 57-63. https://doi.org/10.11113/jt.v77.6708

Schneider K, Garrett L, 2009. Non-therapeutic use of antibiotics in animal agriculture, corresponding resistance rates, and what can be done about it. Center for Global Development. http://www.cgdev.org/content/article/detail/1422307/.

Semedo M, Song B, Sparrer T, Phillips RL, 2018. Antibiotic effects on microbial communities responsible for denitrification and N2O production in grassland soils. Front Microbiol 9: 2121. https://doi.org/10.3389/fmicb.2018.02121

Sivagami K, Vignesh V, Srinivasan R, Divyapriya G, Nambi IM, 2018. Antibiotic usage, residues and resistance genes from food animals to human and environment: An Indian scenario. J Environ Chem Eng 8(1): 102221. https://doi.org/10.1016/j.jece.2018.02.029

Somasegaran P, Hoben HJ, 1995. handbook for rhizobia: methods in legume-Rhizobium technology. Q Rev Biol 70(2): 224-225. https://doi.org/10.1086/419008

Sosa-Hernández JE, Rodas-Zuluaga LI, López-Pacheco IY, Melchor-Martínez EM, Aghalari Z, SalasLimón D et al., 2021. Sources of antibiotics pollutants in the aquatic environment under SARS-CoV-2 pandemic situation. J Environ Chem Eng 4: 100127. https://doi.org/10.1016/j.cscee.2021.100127

Sun Y, Guo Y, Shi M, et al., 2021. Effect of antibiotic type and vegetable species on antibiotic accumulation in soil-vegetable system, soil microbiota, and resistance genes. Chemosphere 263: 128099. https://doi.org/10.1016/j.chemosphere.2020.128099

Tasho RP, Cho JY, 2016. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Sci Total Environ 563-564(3): 366-376. https://doi.org/10.1016/j.scitotenv.2016.04.140

Tasho RP, Ryu SH, Cho JY, 2020. Effect of sulfadimethoxine, oxytetracycline, and streptomycin antibiotics in three types of crop plants-root, leafy, and fruit. Appl Sci 10(3): 1111. https://doi.org/10.3390/app10031111

Thiele-Bruhn S, 2019. Environmental risks from mixtures of antibiotic pharmaceuticals in soils. A literature review. Umweltbundesamt 32: 1-74.

Tiquia SM, Tam NFY, Hodgkiss IJ, 1996. Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ Pollut 93(3): 249-256. https://doi.org/10.1016/S0269-7491(96)00052-8

Trapp S, Eggen T, 2013. Simulation of the plant uptake of organophosphates and other emerging pollutants for greenhouse experiments and field conditions. Environ Sci Pollut Res 20(6): 4018-4029. https://doi.org/10.1007/s11356-012-1337-7

Van Loon LC, Glick BR, 2004. Increased plant fitness by rhizobacteria. In: Molecular ecotoxicology of plants. Ecological studies, vol 170. Sandermann H (Ed), Berlin, Heidelberg. pp. 177-205. https://doi.org/10.1007/978-3-662-08818-0_7

White LJ, Brözel VS, Subramanian S, 2015. Isolation of rhizosphere bacterial communities from soil. Bio Protoc 5(16): 1-9. https://doi.org/10.21769/BioProtoc.1569

WHO, 2017. Ccritically important antimicrobials for human medicine, 5th revision. World Health Organization

Wu QS, Srivastava AK, 2012. Rhizosphere microbial communities: Isolation, characterization, and value addition for substrate development. In: Advances in Citrus Nutrition, Srivastava, A. (eds). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4171-3_13

Zhang T, Li B, 2011. Occurrence, transformation, and fate of antibiotics in municipal wastewater treatment plants. Crit Rev Environ Sci Technol 41(11): 951-998. https://doi.org/10.1080/10643380903392692

Zhang C, Feng Y, Liu YW, Chang HQ, Li ZJ, Xue JM, 2017. Uptake and translocation of organic pollutants in plants: a review. J Integr Agric 16(8): 1659-1668. https://doi.org/10.1016/S2095-3119(16)61590-3

Zhang Y, Lu J, Yan Y, Liu J, Wang M, 2021. Antibiotic residues in cattle and sheep meat and human exposure assessment in Southern Xinjiang, China. Food Sci Nutr 9(11): 6152-6161. https://doi.org/10.1002/fsn3.2568

Zhao F, Yang L, Chen L, Li S, Sun L, 2019. Bioaccumulation of antibiotics in crops under long-term manure application: occurrence, biomass response and human exposure. Chemosphere 219: 882-895. https://doi.org/10.1016/j.chemosphere.2018.12.076

Published
2022-04-27
How to Cite
Nassar, S., & Borjac, J. (2022). Effect of a veterinary antibiotic on the growth of regularly consumed Lebanese plants. Spanish Journal of Agricultural Research, 20(2), e0303. https://doi.org/10.5424/sjar/2022202-18132
Section
Agricultural environment and ecology