A review of the effects of agricultural intensification and the use of pesticides on honey bees and their products and possible palliatives

Keywords: territorial management, bee stressors, crop management, glyphosate, biotic pollinators, Apis mellifera

Abstract

There is considerable scientific evidence revealing a decrease in pollinating insects in different ecosystems around the world. In this context, agricultural intensification and the use of phytosanitary products are likely the main causes. This problem is common to many pollinators but of particular ecosystemic, economic and bromatological significance for honey bees (Apis mellifera) since their presence in these landscapes is mainly due to the proximity of apiaries for human food production and because they are the most important biotic pollinators of agricultural crops. In this review, we present a synthesis of the results of several years of research on this topic, as well as potential solutions referenced in the bibliography that might help alleviate the effects of contamination on honey bees and their products. Additionally, we expose the possible limits of the real implementation of such solutions and conclude on the need to implement land-use planning strategies for agricultural systems. Without mitigating actions in the short term, the sustainability of agricultural ecosystems as bee-friendly habitats and the production of foods suitable for human consumption are uncertain.

Downloads

Download data is not yet available.

References

Agrebi EN, Tosi S, Wilmart O, Scippo ML, de Graaf DC, Saegerman C, 2020. Honey bee and consumer's exposure and risk characterisation to glyphosate-based herbicide (GBH) and its degradation product (AMPA): Residues in beebread, wax, and honey. Sci Total Environ 704: 135312. https://doi.org/10.1016/j.scitotenv.2019.135312

Aizen MA, Harder LD, 2009. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol 19(11): 915-918. https://doi.org/10.1016/j.cub.2009.03.071

Aizen MA, Garibaldi LA, Cunningham SA, Klein AM, 2008. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr Biol 18(20): 1572-1575. https://doi.org/10.1016/j.cub.2008.08.066

Aizen MA, Garibaldi LA, Dondo Bühler MB, 2009. Expansión de la soja y diversidad de la agricultura argentina. Ecología Austral 19(1): 45-54.

Alaux C, Ducloz F, Crauser D, Le Conte Y, 2010. Diet effects on honey bee immunocompetence. Biol Lett 6(4): 562-565. https://doi.org/10.1098/rsbl.2009.0986

Al-Waili N, Salom K, Al-Ghamdi A, Ansari MJ, 2012. Antibiotic, pesticide, and microbial contaminants of honey: human health hazards. The Sci World J 2012: 930849. https://doi.org/10.1100/2012/930849

Allsopp MH, Cherry M, 2004. An assessment of the impact on the bee and agricultural industries in the Western Cape of the clearing of certain Eucalyptus species using questionnaire survey data. Internal Final Report, 58. Nat Gov Rep South Africa, Dept Water Affairs, Pretoria (South Africa).

Altieri MA, Whitcomb WH, 1979. The potential use of weeds in the manipulation of beneficial insects agents in natural crop pest control. Hort Science 14(1): 12-18. https://doi.org/10.21273/HORTSCI.14.1.12

Amulen DR, Spanoghe P, Houbraken M, Tamale A, de Graaf DC, Cross P, Smagghe G, 2017. Environmental contaminants of honey bee products in Uganda detected using LC-MS/MS and GC-ECD. PLoS ONE 12(6): e0178546. https://doi.org/10.1371/journal.pone.0178546

Antonini C, Argilés-Bosch JM, 2017. Productivity and environmental costs from intensification of farming. A panel data analysis across EU regions. J Clean Prod 140: 796-803. https://doi.org/10.1016/j.jclepro.2016.04.009

Arena M, Sgolastra F, 2014. A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicol 23(3): 324-334. https://doi.org/10.1007/s10646-014-1190-1

Atwood D, Paisley-Jones C, 2017. Pesticides industry sales and usage: 2008-2012 market estimates. US Environmental Protection Agency, Washington, DC, 20460, 2017-01. https://www.epa.gov/pesticides/pesticides-industry-sales-and-usage-2008-2012-market-estimates [4th Dec 2020].

Azpiazu C, Bosch J, Bortolotti L, Medrzycki P, Teper D, Molowny-Horas R, et al, 2021. Toxicity of the insecticide sulfoxaflor alone and in combination with the fungicide fluxapyroxad in three bee species. Sci Rep 11(1): 1-9. https://doi.org/10.1038/s41598-021-86036-1

Balbuena MS, Tison L, Hahn ML, Greggers U, Menzel R, Farina WM, 2015. Effects of sublethal doses of glyphosate on honey bee navigation. J Exp Biol 218: 2799-2805. https://doi.org/10.1242/jeb.117291

Barascou L, Brunet JL, Belzunces L, Decourtye A, Henry M, Fourrier J, et al., 2021. Pesticide risk assessment in honeybees: Toward the use of behavioral and reproductive performances as assessment endpoints. Chemosphere 276: 130134. https://doi.org/10.1016/j.chemosphere.2021.130134

Barbosa WF, Smagghe G, Guedes RN, 2015. Pesticides and reduced-risk insecticides, native bees and pantropical stingless bees: Pitfalls and perspectives. Pest Manag Sci 71(8): 1049-1053. https://doi.org/10.1002/ps.4025

Belsky J, Joshi NK, 2019. Impact of biotic and abiotic stressors on managed and feral bees. Insects 10(8): 233. https://doi.org/10.3390/insects10080233

Benbrook CM, 2016. Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28(1): 3. https://doi.org/10.1186/s12302-016-0070-0

Benuszak J, Laurent M, Chauzat M, 2017. The exposure of honey bees (Apis mellifera; Hymenoptera: Apidae) to pesticides: Room for improvement in research. Sci Total Environ 587: 423-438. https://doi.org/10.1016/j.scitotenv.2017.02.062

Berg CJ, King HP, Delenstarr G, Kumar R, Rubio F, Glaze T, 2018. Glyphosate residue concentrations in honey attributed through geospatial analysis to proximity of large-scale agriculture and transfer off-site by bees. PLoS One 13(7): e0198876. https://doi.org/10.1371/journal.pone.0198876

Bernardi S, Venturino E, 2016. Viral epidemiology of the adult Apis mellifera infested by the Varroa destructor mite. Heliyon 2(5): e00101. https://doi.org/10.1016/j.heliyon.2016.e00101

Bernhardt ES, Rosi EJ, Gessner MO, 2017. Synthetic chemicals as agents of global change. Front Ecol Environ 15(2): 84-90. https://doi.org/10.1002/fee.1450

Biesmeijer JC, Roberts SP, Reemer M, Ohlemuller R, Edwards M, 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313: 351-354. https://doi.org/10.1126/science.1127863

Blettler D, Fagúndez G, Chémez MD, 2016. A study of the foraging schedule of honey bees on soy crops as an agronomical tool to mitigate the effects of agrochemicals. Scientia Interfluvius 7 (2): 14-28.

Blettler DC, Fagúndez GA, Caviglia OP, 2018. Contribution of honey bees to soybean yield. Apidologie 49: 101-111. https://doi.org/10.1007/s13592-017-0532-4

Bommuraj V, Chen Y, Klein H, Sperling R, Barel S, Shimshoni JA, 2019. Pesticide and trace element residues in honey and beeswax combs from Israel in association with human risk assessment and honey adulteration. Food Chem 299: 125123. https://doi.org/10.1016/j.foodchem.2019.125123

Böhme F, Bischoff G, Zebitz CP, Rosenkranz P, Wallner K, 2017. Chronic exposure of honey bees, Apis mellifera (Hymenoptera: Apidae), to a pesticide mixture in realistic field exposure rates. Apidologie 48(3): 353-363. https://doi.org/10.1007/s13592-016-0479-x

Brook BW, Sodhi NS, Bradshaw CJ, 2008. Synergies among extinction drivers under global change. Trends Ecol Evol 23: 453-460. https://doi.org/10.1016/j.tree.2008.03.011

Castelli L, Branchiccela B, Garrido M, Invernizzi C, Porrini M, Romero H, et al., 2020. Impact of nutritional stress on honey bee gut microbiota, immunity, and Nosema ceranae infection. Microb Ecol 80(4): 908-919. https://doi.org/10.1007/s00248-020-01538-1

Chauzat MP, Martel AC, Cougoule N, Porta P, Lachaize J, Zeggane S, et al., 2011. An assessment of honey bee colony matrices, Apis mellifera (Hymenoptera: Apidae) to monitor pesticide presence in continental France. Environ Toxicol Chem 30(1): 103-111. https://doi.org/10.1002/etc.361

Chen C, Liu Z, Luo Y, Xu Z, Wang S, Zhang X, et al, 2017. Managed honey bee colony losses of the Eastern honey bee (Apis cerana) in China (2011-2014). Apidologie 48(5): 692-702. https://doi.org/10.1007/s13592-017-0514-6

Chhabra A, Geist H, Houghton RA, Haberl H, Alves D, Rudel T, 2006. Multiple impacts of land-use/cover change. In: Land-use and land-cover change, pp: 71-116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32202-7_4

Chiari WC, Toledo VDA, Ruvolo-Takasusuki MCC, Attencia VM, Costa FM, Kotaka CS, et al., 2005. Floral biology and behavior of Africanized honey bees Apis mellifera in soybean (Glycine max L. Merril). Brazil Archiv Biol Technol 48(3): 367-378. https://doi.org/10.1590/S1516-89132005000300006

Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, et al., 2006. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honey bee. Insect Mol Biol 15(5): 615-636. https://doi.org/10.1111/j.1365-2583.2006.00672.x

CNA 2018. Censo Nacional Agropecuario. https://cna2018.indec.gob.ar/?_ga=2.12913204.226677820.1586445731-1130372488.1586445731 [March 2020].

Dai P, Jack CJ, Mortensen AN, Bloomquist JR, Ellis JD, 2018. The impacts of chlorothalonil and diflubenzuron on Apis mellifera L. larvae reared in vitro. Ecotoxicol Environ Saf 164: 283-288. https://doi.org/10.1016/j.ecoenv.2018.08.039

De Lange WJ, Veldtman R, Allsopp MH, 2013. Valuation of pollinator forage services provided by Eucalyptus cladocalyx. J Environ Manag 125: 12-18. https://doi.org/10.1016/j.jenvman.2013.03.027

De Oliveira RC, do Nascimento Queiroz SC, da Luz CFP, Porto RS, Rath S, 2016. Bee pollen as a bioindicator of environmental pesticide contamination. Chemosphere 163: 525-534. https://doi.org/10.1016/j.chemosphere.2016.08.022

De Pedro L, López-Gallego E, Pérez-Marcos M, Ramírez-Soria MJ, Sanchez JA, 2021. Native natural enemies in Mediterranean melon fields can provide levels of pest control similar to conventional pest management with broad-spectrum pesticides. Biol Control 164: 104778. https://doi.org/10.1016/j.biocontrol.2021.104778

Dibartolomeis M, Kegley S, Mineau P, Radford R, Klein K, 2019. An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States. PLoS One 14(8): e0220029. https://doi.org/10.1371/journal.pone.0220029

Di Pasquale G, Salignon M, Le Conte Y, Belzunces LP, Decourtye A, Kretzschmar A, et al., 2013. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PloS One 8(8): e72016. https://doi.org/10.1371/journal.pone.0072016

EFSA-PPR, 2012. Scientific Opinion on the science behind the development of a risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J 10(5): 2668. https://doi.org/10.2903/j.efsa.2012.2668

Ellis M, 2010. Pesticides applied to crops and honey bee toxicity. CAP updates. https://bee-health.extension.org/pesticides-applied-to-crops-and-honey-bee-toxicity/

Fagúndez GA, Blettler D, Krumrick CG, Bertos MA, Trujillo CG, 2016a. Do agrochemicals used during soybean flowering affect the visits of Apis mellifera L.? Span J Agric Res 14(1): e0301. https://doi.org/10.5424/sjar/2016141-7492

Fagundez GA, Reinoso PD, Aceñolaza PG, 2016b. Caracterización y fenología de especies de interés apícola en el departamento Diamante (Entre Ríos, Argentina). Bol Soc Arg Bot 51(2): 243-267. https://doi.org/10.31055/1851.2372.v51.n2.14837

FAO-WHO, 1997. Codex maximum limits for pesticide residues. http://www.fao.org/waicent/faostat/Pest-Residue/pest-e.htm#E11E3

FAOSTAT, 2017. FAO statistical databases, Rome. http://www.fao.org/faostat/en/#data.

Foley JA, DeFries R, Asner GP, Barford C, et al., 2005. Global consequences of land use. Science 309(5734): 570-574. https://doi.org/10.1126/science.1111772

Foley K, Fazio G, Jensen AB, Hughes WO, 2012. Nutritional limitation and resistance to opportunistic Aspergillus parasites in honey bee larvae. J Invert Pathol 111(1): 68-73. https://doi.org/10.1016/j.jip.2012.06.006

Gallacher M, Justo AM, 2016. Uso de TICs en el sector agropecuario con énfasis en el subsector apícola de Argentina, Uruguay, República Dominicana y Costa Rica. Conf. El sector apícola y sus avances-Las TIC's. INTA, Instituto de Economía, Buenos Aires.

Gallai N, Salles JM, Settele J, Vaissière BE, 2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68(3): 810-821. https://doi.org/10.1016/j.ecolecon.2008.06.014

García FO, Ambroggio M, Trucco V, 2000. No-tillage in the Pampas of Argentina: A success story. Better Crops Int 14: 24-27.

García-Chao M, Agruña MJ, Calvete GF, Sakkas V, Llompart M, Dagnac T, 2010. Validation of an off line solid phase extraction liquid chromatography-tandem mass spectrometry method for the determination of systemic insecticide residues in honey and pollen samples collected in apiaries from NW Spain. Anal Chim Acta 672(1-2): 107-113. https://doi.org/10.1016/j.aca.2010.03.011

Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, et al., 2013. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339(6127): 1608-1611. https://doi.org/10.1126/science.1230200

Garibaldi LA, Schulte LA, Jordar DNN, Carella DSG, Kremen C, 2021. Time to integrate pollinator science into soybean production. Trends Ecol Evol 36(7): 573-575. https://doi.org/10.1016/j.tree.2021.03.013

Genersch E, Von Der Ohe W, Kaatz H, Schroeder A, Otten C, Büchler R, et al., 2010. The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41(3): 332-352. https://doi.org/10.1051/apido/2010014

Gierer F, Vaughan S, Slater M, Thompson HM, Elmore JS, Girling RD, 2019. A review of the factors that influence pesticide residues in pollen and nectar: Future research requirements for optimising the estimation of pollinator exposure. Environ Pollut 249: 236-247. https://doi.org/10.1016/j.envpol.2019.03.025

Gleiciani Bürger PR, Campos MJ, 2014. Aspects of landscape and pollinators what is important to bee conservation? Diversity 6(1): 158-175. https://doi.org/10.3390/d6010158

Gómez-Marco F, Urbaneja A, Tena A, 2016. A sown grass cover enriched with wild forb plants improves the biological control of aphids in citrus. Basic Appl Ecol 17(3): 210-219. https://doi.org/10.1016/j.baae.2015.10.006

Goñalons CM, Farina WM, 2018. Impaired associative learning after chronic exposure to pesticides in young adult honey bees. J Exp Biol 221(7): jeb176644. https://doi.org/10.1242/jeb.176644

Goulson D, 2014. Pesticides linked to bird declines. Nature 511(7509): 295-296. https://doi.org/10.1038/nature13642

Goulson D, Nicholls E, Botías C, Rotheray EL, 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347(6229). https://doi.org/10.1126/science.1255957

Grant MJ, Booth A, 2009. A typology of reviews: an analysis of 14 review types and associated methodologies. Health Inform Libr J 26(2): 91-108. https://doi.org/10.1111/j.1471-1842.2009.00848.x

Guyton KZ, Loomis D, Grosse Y, El Ghissassi F, Benbrahim-Tallaa L, Guha N, et al., 2015. International Agency for Research on Cancer Monograph Working Group ILF. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncology 16(5): 490-491. https://doi.org/10.1016/S1470-2045(15)70134-8

Hagler JR, Mueller S, Teuber LR, Machtley SA, Van Deynze A, 2011. Foraging range of honey bees, Apis mellifera, in alfalfa seed production fields. J Insect Sci 11(1): 144. https://doi.org/10.1673/031.011.14401

Hall MJ, Zhang G, O'Neal ME, Bradbury SP, Coats JR, 2022. Quantifying neonicotinoid insecticide residues in milkweed and other forbs sampled from prairie strips established in maize and soybean fields. Agr Ecosyst Environ 325: 107723. https://doi.org/10.1016/j.agee.2021.107723

Handford CE, Elliott CT, Campbell K, 2015. A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards. Integr Environ Assess Manag 11(4): 525-536. https://doi.org/10.1002/ieam.1635

Hardstone MC, Scott JG, 2010. Is Apis mellifera more sensitive to insecticides than other insects? Pest Manag Sci 66(11): 1171-1180. https://doi.org/10.1002/ps.2001

Hartman GL, West ED, Herman TK, 2011. Crops that feed the World 2. Soybean - Worldwide production, use, and constraints caused by pathogens and pests. Food Secur 3(1): 5-17. https://doi.org/10.1007/s12571-010-0108-x

Herbert LT, Vázquez DE, Arena A, Farina WM, 2014. Effects of field-realistic doses of glyphosate on honey bee appetitive behaviour. J Exp Biol 217(19): 3457-3464. https://doi.org/10.1242/jeb.109520

Irungu J, Fombong AT, Kurgat J, Mulati P, Ongus J, Nkoba, et al., 2016. Analysis of honey bee hive products as a model for monitoring pesticide usage in agroecosystems. J Environ Earth Sci 6(8): 2225-0948.

Johnson RM, 2015. Honey bee toxicology. Annu Rev Entomol 60: 415-434. https://doi.org/10.1146/annurev-ento-011613-162005

Johnson RM, Mao W, Pollock HS, Niu G, Schuler MA, Berenbaum MR, 2012. Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera. PLoS One 7(2): e31051. https://doi.org/10.1371/journal.pone.0031051

Karise R, Raimets R, Bartkevics V, Pugajeva I, Pihlik P, Keres I, et al., 2017. Are pesticide residues in honey related to oilseed rape treatments? Chemosphere 188: 389-396. https://doi.org/10.1016/j.chemosphere.2017.09.013

Kiatoko N, Raina SK, Van Langevelde F, 2017. Impact of habitat degradation on species diversity and nest abundance of fve African stingless bee species in a tropical rainforest of Kenya. Int J Trop Insect Sci 37(3): 189-197. https://doi.org/10.1017/S174275841700011X

Klein AM, Vaissiere BE, Cane JH, Dewenter IS, Cunningham SA, Kremen C, et al., 2007. Importance of pollinators in changing landscapes for world crops. Proc Roy Soc B: Biol Sci 274: 303-313. https://doi.org/10.1098/rspb.2006.3721

Klein Goldewijk K, Beusen A, Van Drecht G, De Vos M, 2011. The HYDE 3.1 spatially explicit database of human‐induced global land‐use change over the past 12,000 years. Glob Ecol Biogeogr 20(1): 73-86. https://doi.org/10.1111/j.1466-8238.2010.00587.x

Kordbacheh F, Liebman M, Harris M, 2020. Strips of prairie vegetation placed within row crops can sustain native bee communities. PloS One 15(10): e0240354. https://doi.org/10.1371/journal.pone.0240354

Kremen C, Williams NM, Thorp RW, 2002. Crop pollination from native bees at risk from agricultural intensification. P Nat Acad Sci USA 99: 16812-16816. https://doi.org/10.1073/pnas.262413599

Kulhanek K, Steinhauer N, Rennich K, Caron DM, Sagili RR, Pettis JS, et al., 2017. A national survey of managed honey bee 2015-2016 annual colony losses in the USA. J Apic Res 56(4): 328-340. https://doi.org/10.1080/00218839.2017.1344496

Laio F, Ridolfi L, D'Odorico P, 2016. The past and future of food stocks. Environ Res Lett 11(3): 035010. https://doi.org/10.1088/1748-9326/11/3/035010

Ledoux ML, Hettiarachchy N, Yu X, Howard L, Lee SO, 2020. Penetration of glyphosate into the food supply and the incidental impact on the honey supply and bees. Food Control 109: 106859. https://doi.org/10.1016/j.foodcont.2019.106859

Liu J, Kuang W, Zhang Z, Xu X, Qin Y, Ning J, et al., 2014. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J Geograph Sci 24(2): 195-210. https://doi.org/10.1007/s11442-014-1082-6

Long EY, Krupke CH, 2016. Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nature Commun 7(1): 1-12. https://doi.org/10.1038/ncomms11629

Maggi M, Antúnez K, Invernizzi C, Aldea P, Vargas M, Negri P, et al., 2016. Honey bee health in South America. Apidologie 47(6): 835-854. https://doi.org/10.1007/s13592-016-0445-7

Malaspina O, Souza TF, Zacarin ECMS, Cruz AS, Jesus D, 2008. Efeitos provocados por agrotóxicos em abelhas no Brasil. VIII Encontro Sobre Abelhas. Resumos. Ribeirão Preto: FUNPEC, 41-48.

Malhat FM, Haggag MN, Loutfy NM, Osman MA, Ahmed MT, 2015. Residues of organochlorine and synthetic pyrethroid pesticides in honey, an indicator of ambient environment, a pilot study. Chemosphere 120: 457-461. https://doi.org/10.1016/j.chemosphere.2014.08.032

May E, Wilson J, Isaacs R, 2015. Minimizing pesticide risk to bees in fruit crops. Extens Bull Michigan Stat Univ-E3245, 1-16.

Medici SK, Blando M, Sarlo E, Maggi M, Espinosa JP, Ruffinengo S, et al., 2019. Pesticide residues used for pest control in honey bee colonies located in agroindustrial areas of Argentina. Int J Pest Manag 66(2): 163-172. https://doi.org/10.1080/09670874.2019.1597996

Mitchell EA, Mulhauser B, Mulot M, Mutabazi A, Glauser G, Aebi A, 2017. A worldwide survey of neonicotinoids in honey. Science 358(6359): 109-111. https://doi.org/10.1126/science.aan3684

Muli E, Kilonzo J, Dogley N, Monthy G, Kurgat J, Irungu J, et al., 2018. Detection of pesticide residues in selected bee products of honey bees (Apis mellifera L.) colonies in a preliminary study from Seychelles archipelago. Bull Environ Contam Toxicol 101(4): 451-457. https://doi.org/10.1007/s00128-018-2423-4

Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, VanEngelsdorp D, et al., 2010. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5(3): e9754. https://doi.org/10.1371/journal.pone.0009754

Nazzi F, Pennacchio F, 2014. Disentangling multiple interactions in the hive ecosystem. Trends Parasitol 30(12): 556-561. https://doi.org/10.1016/j.pt.2014.09.006

Negri P, Maggi MD, Ramirez L, De Feudis L, Szwarski N, Quintana S, et al., 2015. Abscisic acid enhances the immune response in Apis mellifera and contributes to the colony fitness. Apidologie 46(4): 542-557. https://doi.org/10.1007/s13592-014-0345-7

Nicholls CI, Altieri MA, 2013. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron Sustain Dev 33(2): 257-274. https://doi.org/10.1007/s13593-012-0092-y

OJ, 2005. Regulation (EC) nº 396/2005 of the European Parliament and of the Council on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. http://data.europa.eu/eli/reg/2005/396/oj.

Olate-Olave VR, Verde M, Vallejos L, Perez Raymonda L, Cortese MC, Doorn M, 2021. Bee health and productivity in Apis mellifera, a consequence of multiple factors. Vet Sci 8(5): 76. https://doi.org/10.3390/vetsci8050076

Pacheco P, 2012. Actor and frontier types in the Brazilian Amazon: Assessing interactions and outcomes associated with frontier expansion. Geoforum 43(4): 864-874. https://doi.org/10.1016/j.geoforum.2012.02.003

Pagano MC, Miransari M, 2016. The importance of soybean production worldwide. In: Abiotic and biotic stresses in soybean production, pp: 1-26. Academic Press. https://doi.org/10.1016/B978-0-12-801536-0.00001-3

Panseri S, Catalano A, Giorgi A, Arioli F, Procopio A, Britti D, et al., 2014. Occurrence of pesticide residues in Italian honey from different areas in relation to its potential contamination sources. Food Control 38: 150-156. https://doi.org/10.1016/j.foodcont.2013.10.024

Pareja L, Colazzo M, Pérez-Parada A, Niell S, Carrasco-Letelier L, Besil N, et al., 2011. Detection of pesticides in active and depopulated beehives in Uruguay. Int J Environ Res Public Health 8(10): 3844-3858. https://doi.org/10.3390/ijerph8103844

Pettis JS, Lichtenberg EM, Andree M, Stitzinger J, Rose R, 2013. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One 8(7): e70182. https://doi.org/10.1371/journal.pone.0070182

Pirk CW, Human H, Crewe RM, VanEngelsdorp D, 2014. A survey of managed honey bee colony losses in the Republic of South Africa-2009 to 2011. J Apic Res 53(1): 35-42. https://doi.org/10.3896/IBRA.1.53.1.03

Powney GD, Carvell C, Edwards M, Morris RK, Roy HE, Woodcock BA, et al., 2019. Widespread losses of pollinating insects in Britain. Nature Commun 10(1): 1-6. https://doi.org/10.1038/s41467-019-08974-9

Population Reference Bureau, 2017. World Population Data Sheet (2017) Washington, DC. https://www.prb.org/international/indicator/population/snapshot/, [8th Dec 2020].

Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE, 2010a. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25(6): 345-353. https://doi.org/10.1016/j.tree.2010.01.007

Potts SG, Roberts SP, Dean R, Marris G, Brown MA, Jones R, et al., 2010b. Declines of managed honey bees and beekeepers in Europe. J Apic Res 49(1): 15-22. https://doi.org/10.3896/IBRA.1.49.1.02

Prado MM, García DG, Sastre RM, 2018. Los insectos polinizadores en la agricultura: importancia y gestión de su biodiversidad. Ecosistemas 27(2): 81-90. https://doi.org/10.7818/ECOS.1394

Ramankutty N, Foley JA, 1999. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob Biogeochem Cycl 13(4): 997-1027. https://doi.org/10.1029/1999GB900046

Rapisarda VM, Hussein AM, 2002. Nuclear technology and beekeeping industry: much more than atoms and bees. Rev Comis Nac Energ Atom 2(5/6): 5-11.

Ravoet J, Reybroeck W, de Graaf DC, 2015. Pesticides for apicultural and/or agricultural application found in Belgian honey bee wax combs. Bull Environ Contam Toxicol 94(5): 543-548. https://doi.org/10.1007/s00128-015-1511-y

Reboratti C, 2010. Un mar de soja: la nueva agricultura en Argentina y sus consecuencias. Rev Geograf Norte Grande (45): 63-76. https://doi.org/10.4067/S0718-34022010000100005

Rortais A, Arnold G, Dorne JL, More SJ, Sperandio G, Streissl F, et al., 2017. Risk assessment of pesticides and other stressors in bees: principles, data gaps and perspectives from the European Food Safety Authority. Sci Total Environ 587: 524-537. https://doi.org/10.1016/j.scitotenv.2016.09.127

Sánchez-Bayo F, Wyckhuys KA, 2019. Worldwide decline of the entomofauna: A review of its drivers. Biol Conserv 232: 8-27. https://doi.org/10.1016/j.biocon.2019.01.020

Schmolke A, Kearns B, O'Neill B, 2018. Plant guttation water as a potential route for pesticide exposure in honey bees: a review of recent literature. Apidologie 49(5): 637-646. https://doi.org/10.1007/s13592-018-0591-1

Schulte LA, Niemi J, Helmers MJ, Liebman M, Arbuckle JG, James DE, et al., 2017. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn-soybean croplands. P Nat Acad Sci 114(42): 11247-11252. https://doi.org/10.1073/pnas.1620229114

Scursoni JA, Vera ACD, Oreja FH, Kruk BC, de la Fuente EB, 2019. Weed management practices in Argentina crops. Weed Technol 33(3): 459-463. https://doi.org/10.1017/wet.2019.26

Seto KC, Güneralp B, Hutyra LR, 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. P Nat Acad Sci 109(40): 16083-16088. https://doi.org/10.1073/pnas.1211658109

Sgolastra F, Blasioli S, Renzi T, Tosi S, Medrzycki P, Molowny-Horas R, et al., 2018. Lethal effects of Cr (III) alone and in combination with propiconazole and clothianidin in honey bees. Chemosphere 191: 365-372. https://doi.org/10.1016/j.chemosphere.2017.10.068

Simon-Delso N, San Martin G, Bruneau E, Delcourt C, Hautier L, 2017. The challenges of predicting pesticide exposure of honey bees at landscape level. Sci Rep 7(1): 1-10. https://doi.org/10.1038/s41598-017-03467-5

Spurgeon D, Hesketh H, Lahive E, Svendsen C, Baas J, Robinson A, et al., 2016. Chronic oral lethal and sub-lethal toxicities of different binary mixtures of pesticides and contaminants in bees (Apis mellifera, Osmia bicornis and Bombus terrestris). EFSA Supp Publ 13(9). https://doi.org/10.2903/sp.efsa.2016.EN-1076

Steinhauer N, Kulhanek K, Antúnez K, Human H, Chantawannakul P, Chauzat MP, 2018. Drivers of colony losses. Curr Opin Insect Sci 26: 142-148. https://doi.org/10.1016/j.cois.2018.02.004

Tosi S, Costa C, Vesco U, Quaglia G, Guido G, 2018. A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Sci Total Environ 615: 208-218. https://doi.org/10.1016/j.scitotenv.2017.09.226

UN FAO, 2017. Driving action across the 2030 agenda for sustainable development/ sustainable development goals/ food and agriculture organization of the United Nations.

Valdovinos-Flores C, Alcantar-Rosales VM, Gaspar-Ramírez O, Saldaña-Loza LM, Dorantes-Ugalde JA, 2017. Agricultural pesticide residues in honey and wax combs from Southeastern, Central and Northeastern Mexico. J Apic Res 56(5): 667-679. https://doi.org/10.1080/00218839.2017.1340798

Vandame R, Palacio MA, 2010. Preserved honey bee health in Latin America: a fragile equilibrium due to low-intensity agriculture and beekeeping? Apidologie 41(3): 243-255. https://doi.org/10.1051/apido/2010025

Van Eck NJ, Waltman L, 2014. CitNetExplorer: A new software tool for analyzing and visualizing citation networks. J Informetrics 8(4): 802-823. https://doi.org/10.1016/j.joi.2014.07.006

Van Engelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, et al., 2009. Colony collapse disorder: a descriptive study. PloS One 4(8): e6481. https://doi.org/10.1371/journal.pone.0006481

Van Engelsdorp D, Traynor KS, Andree M, Lichtenberg EM, Chen Y, Saegerman C, et al., 2017. Colony collapse disorder (CCD) and bee age impact honey bee pathophysiology. PLoS One 12(7): e0179535. https://doi.org/10.1371/journal.pone.0179535

Vaudo AD, Tooker JF, Grozinger CM, Patch HM, 2015. Bee nutrition and floral resource restoration. Curr Opin Insect Sci 10: 133-141. https://doi.org/10.1016/j.cois.2015.05.008

Virgen MM, 2008. Estudio de la contaminación por pesticidas organoclorados, organofosforados y por bifernilos policlorados en miel producida en la Comunidad Autónoma de Aragón. Doctoral diss., Univ. Zaragoza, Spain.

Watson K, Stallins JA, 2016. Honey bees and colony collapse disorder: A pluralistic reframing. Geograph Compass 10(5): 222-236. https://doi.org/10.1111/gec3.12266

Winfree R, Bartomeus I, Cariveau DP, 2011. Native pollinators in anthropogenic habitats. Annu Rev Ecol Evol Syst 42: 1-22. https://doi.org/10.1146/annurev-ecolsys-102710-145042

Wu JY, Smart MD, Anelli CM, Sheppard WS, 2012. Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. J Invert Pathol 109(3): 326-329. https://doi.org/10.1016/j.jip.2012.01.005

Yamada Y, 2017. Importance of Codex Maximum Residue Limits for pesticides for the health of consumers and international trade, Chapter 7. In: Food safety assessment of pesticide residues, pp. 269-282. World Scientific. https://doi.org/10.1142/9781786341693_0007

Zhang W, Jiang F, Ou J, 2011. Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1(2): 125.

Zhu W, Schmehl DR, Mullin CA, Frazier JL, 2014. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLoS One 9(1): e77547. https://doi.org/10.1371/journal.pone.0077547

Published
2022-11-10
How to Cite
Blettler, D. C., Biurrun-Manresa, J. A., & Fagúndez, G. A. (2022). A review of the effects of agricultural intensification and the use of pesticides on honey bees and their products and possible palliatives. Spanish Journal of Agricultural Research, 20(4), e03R02. https://doi.org/10.5424/sjar/2022204-19516
Section
Agricultural environment and ecology