Microclimate evaluation of a new design of insect-proof screens in a Mediterranean greenhouse

  • Alejandro Lopez-Martinez Universidad de Almería. Centro de Investigación en Biotecnología Agroalimentaria BITAL. Ctra. de Sacramento s/n. 04120 Almería
  • Diego L. Valera Martínez Universidad de Almería. Centro de Investigación en Biotecnología Agroalimentaria BITAL. Ctra. de Sacramento s/n. 04120 Almería
  • Francisco Molina-Aiz Universidad de Almería. Centro de Investigación en Biotecnología Agroalimentaria BITAL. Ctra. de Sacramento s/n. 04120 Almería
  • Araceli Peña-Fernandez Universidad de Almería. Centro de Investigación en Biotecnología Agroalimentaria BITAL. Ctra. de Sacramento s/n. 04120 Almería
  • Patricia Marín-Membrive Universidad de Almería. Centro de Investigación en Biotecnología Agroalimentaria BITAL. Ctra. de Sacramento s/n. 04120 Almería
Keywords: natural ventilation, sonic anemometry, discharge coefficient, ventilation efficiency

Abstract

This work studies natural ventilation in a Mediterranean greenhouse, comparing a new experimental screen of 13×30 threads cm-2 (porosity 39.0%) with a commercial control screen of 10×20 threads cm-2 (porosity 33.5%). In addition, both screens were tested in a wind tunnel to determine the discharge coefficients Cd of the greenhouse side and roof vents, which proved to be 0.16 for the commercial control screen and 0.18 for the experimental screen at both vents. These values represent a theoretical increase of 11% (Cd,φ-10×20 /Cd,φ-13×30 = 0.89) in the natural ventilation capacity of the greenhouse when the experimental screen is used. The greenhouse was divided into two separate sections allowing us to analyze natural ventilation in both sectors simultaneously. Air velocity was measured in the lateral and roof vents with two 3D and six 2D sonic anemometers. Using the commercial control screen there was an average reduction of 16% in ventilation rate, and an average increase of 0.5ºC in the average indoor air temperature, compared to the experimental screen. In addition, the ventilation efficiency ηT was higher with the experimental screen (mean value of 0.9) than with the control (mean value 0.6). We have designed an experimental insect-proof screen (13×30 threads cm-2) with smaller thread diameter, higher thread density, smaller pore size and higher porosity than are used in most commercial meshes. All of these factors promote natural ventilation and improve the greenhouse microclimate.

Downloads

Download data is not yet available.

References

Alvarez AJ, 2010. Analysis of the geometric characteristics and aerodynamic behaviour of insect-proof screens used in greenhouses to protect crops. Doctoral thesis. Universidad de Almería, Almería, Spain [In Spanish].

Alvarez AJ, Oliva RM, Valera DL, 2012. Software for the geometric characterisation of insect-proof screens. Comput Electron Agric 82: 134-144. http://dx.doi.org/10.1016/j.compag.2012.01.001

Ansari MA, Shah FA, Whittaker M, Prasad M, Butt TM, 2007. Control of western flower thrips (Frankliniella occidentalis) pupae with Metarhizium anisopliae in peat and peat alternative growing media. Biol Control 40: 293-297. http://dx.doi.org/10.1016/j.biocontrol.2006.12.007

Arbel A, Shklyar A, Barak M, 2000. Buoyancy-driven ventilation in a greenhouse cooled by a fogging system. Acta Hort 534: 327-334.

Arthurs S, Heinz KM, Thompson S, Krauter PC, 2003. Effect of temperature on infection, development and reproduction of the parasitic nematode Thripinema nicklewoodi in Frankliniella occidentalis. BioControl 48: 417-429. http://dx.doi.org/10.1023/A:1024798928406

ASABE Standards, 2008. EP406.4: Heating, ventilating and cooling greenhouses. ASAE, St. Joseph, MI, USA.

Baeza EJ, Pérez-Parra JJ, Montero JI, Bailey BJ, López JC, Gázquez JC, 2009. Analysis of the role of sidewall vents on buoyancy-driven natural ventilation in parral-type greenhouses with and without insect screens using computational fluid dynamics. Biosyst Eng 104: 86-96. http://dx.doi.org/10.1016/j.biosystemseng.2009.04.008

Bailey BJ, 2003. Screens stop insects but slow airflow. Fruit Veg Tech 3: 6-8.

Bailey BJ, Montero JI, Pérez-Parra JJ, Robertson AP, Baeza E, Kamaruddin R, 2003. Airflow resistance of greenhouse ventilators with and without insect screens. Biosyst Eng 86(2): 217-229. http://dx.doi.org/10.1016/S1537-5110(03)00115-6

Baker JR, Jones RK, 1989. Screening as part of insect and disease management in the greenhouse. North Carolina Flower Growers' Bulletin 34: 1-9.

Bartzanas T, Boulard T, Kittas C, 2002. Numerical simulation of the airflow and temperature distribution in a tunnel greenhouse equipped with insect-proof screen in the openings. Comput Electron Agric 34: 207-221. http://dx.doi.org/10.1016/S0168-1699(01)00188-0

Berlinger MJ, Leblush-Mordechl S, Fridja D, Mor N, 1992. The effect of types of greenhouse screens on the presence of western flower thrips: a preliminary study. OILB-SROP Bull 16(2): 13-19.

Boulard T, Meneses JF, Mermier M, Papadakis G, 1996. The mechanisms involved in the natural ventilation of greenhouses. Agric Forest Meteorol 79: 61-77. http://dx.doi.org/10.1016/0168-1923(95)02266-X

Boulard T, Feuilloley P, Kittas C, 1997. Natural ventilation performance of six greenhouse and tunnel types. J Agr Eng Res 67(4): 249-266. http://dx.doi.org/10.1006/jaer.1997.0167

Boulard T, Kittas C, Papadakis G, Mermier M, 1998. Pressure field and airflow at the opening of a naturally ventilated greenhouse. J Agr Eng Res 71: 93-102. http://dx.doi.org/10.1006/jaer.1998.0302

Boulard T, Wang S, Haxaire R, 2000. Mean and turbulent air flows and microclimatic patterns in an empty greenhouse tunnel. Agric Forest Meteorol 100: 169-181. http://dx.doi.org/10.1016/S0168-1923(99)00136-7

Campen JB, 2005. Greenhouse design applying CFD for Indonesian conditions. Acta Hort 691: 419-424.

Campen JB, Bot GPA, 2003. Determination of greenhouse specific aspects of ventilation using three dimensional computational fluid dynamics. Biosyst Eng 84(1): 69-77. http://dx.doi.org/10.1016/S1537-5110(02)00221-0

Casta-é C, Alomar O, Goula M, Gabarra R, 2004. Colonization of tomato greenhouses by the predatory mirid bugs Macrolophus caliginosus and Dicyphus tamaninii. Biol Control 30: 591-597. http://dx.doi.org/10.1016/j.biocontrol.2004.02.012

Dierickx IE, 1998. Flow reduction of synthetic screens obtanined with both a water and airflow apparatus. J Agr Eng Res 71: 67-73. http://dx.doi.org/10.1006/jaer.1998.0299

Escamirosa C, 2009. Analysis of the effect of new anti-insect methods on several crops in Mediterranean greenhouses. Doctoral thesis. Universidad de Almería, Almería, Spain [In Spanish].

Fatnassi H, Boulard T, Demrati H, Bouirden L, Sappe G, 2002. Ventilation performance of a large Canarian-type greenhouse equipped with insect-proof nets. Biosyst Eng 82(1): 97-105. http://dx.doi.org/10.1006/bioe.2001.0056

Fatnassi H, Boulard T, Bouirden L, 2003. Simulation of climatic conditions in full-scale greenhouse fitted with insect-proof screens. Agric Forest Meteorol 118: 97-111. http://dx.doi.org/10.1016/S0168-1923(03)00071-6

Fatnassi H, Boulard T, Poncet C, Chave M, 2006. Optimisation of greenhouse insect screening with computational fluid dynamics. Biosyst Eng 93(3): 301-312. http://dx.doi.org/10.1016/j.biosystemseng.2005.11.014

Forchheimer P, 1901. Easserbewegung durch boden. Z Ver Deutsch 45: 1782-1788.

Harmanto, Tantau H, Salokhe VM, 2006. Microclimate and air exchange rates in greenhouses covered with different nets in the humid tropics. Biosyst Eng 94(2): 239-253. http://dx.doi.org/10.1016/j.biosystemseng.2006.02.016

Hellickson MA, Walker JN, 1983. Ventilation of agricultural structures. ASAE Monograph No. 6., ASABE, St. Joseph, MI, USA.

Hilje L, Stansly PA, 2008. Living ground covers for management of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and tomato yellow mottle virus (ToYMoV) in Costa Rica. Crop Prot 27: 10-16. http://dx.doi.org/10.1016/j.cropro.2007.04.003

Hoddle MS, van Driesche RG, Elkinton JS, Sanderson JP, 1998. Discovery and utilization of Bemisia argentifolii patches by Eretmocerus eremicus and Encarsia formosa (Beltsville strain) in greenhouses. Entomol Exp Appl 87: 15-28. http://dx.doi.org/10.1046/j.1570-7458.1998.00300.x

Katsoulas N, Bartzanas T, Boulard T, Mermier M, Kittas C, 2006. Effect of vent openings and insect screens on greenhouse ventilation. Biosyst Eng 93(4): 427-436. http://dx.doi.org/10.1016/j.biosystemseng.2005.01.001

Kittas C, Boulard T, Papadakis G, 1997. Natural ventilation of a greenhouse with ridge and side openings: sensitivity to temperature and wind effects. T ASAE 40(2): 415-425. http://dx.doi.org/10.13031/2013.21268

Kittas C, Boulard T, Bartzanas T, Katsoulas N, Mermier M, 2002. Influence of an insect screen on greenhouse ventilation. T ASAE 45(4): 1083-1090. http://dx.doi.org/10.13031/2013.9940

Kittas C, Katsoulas N, Bartzanas T, Mermier M, Boulard T, 2008. The impact of insect screens and ventilation openings on the greenhouse microclimate. T ASABE 51(6): 2151-2165. http://dx.doi.org/10.13031/2013.25396

Kosmos SR, Riskowski GL, Christianson LL, 1993. Force and static pressure resulting from airflow through screens. T ASAE 36(5): 1467-1472. http://dx.doi.org/10.13031/2013.28487

Linker R, Tarnopolsky M, Seginer I, 2002. Increased resistance to flow and temperature-rise resulting from dust accumulation on greenhouse insect-proof screens. ASAE Ann Int Meeting, Chicago (USA), July 28-31. Paper 024040.

López A, Valera DL, Molina-Aiz FD, 2011. Sonic anemometry to measure natural ventilation in greenhouses. Sensors 11: 9820-9838. http://dx.doi.org/10.3390/s111009820

López A, Valera DL, Molina-Aiz FD, Pe-a A, 2012. Sonic anemometry measurements to determine airflow patterns in multi-tunnel greenhouse. Span J Agric Res 10(3): 631-642. http://dx.doi.org/10.5424/sjar/2012103-660-11

López-Martínez A, Valera DL, Molina-Aiz FD, Pe-a A, Marín P, 2013. Field analysis of the deterioration after some years of use of four insect-proof screens utilized in Mediterranean greenhouses. Span J Agric Res 11(4): 958-967. http://dx.doi.org/10.5424/sjar/2013114-4093

Lucas E, Alomar A, 2002. Impact of the presence of Dicyphus tamaninii Wagner (Heteroptera: Miridae) on whitefly (Homoptera: Aleyrodidae) predation by Macrolophus caliginosus (Wagner) (Heteroptera: Miridae). Biol Control 25: 123-128. http://dx.doi.org/10.1016/S1049-9644(02)00054-3

Mainali BP, Lim UT, 2008. Use of flower model trap to reduce the infestation of greenhouse whitefly on tomato. J Asia Pac Entomol 11: 65-68. http://dx.doi.org/10.1016/j.aspen.2008.04.005

Miguel AF, Van de Braak NJ, Bot GPA, 1997. Analysis of the airflow characteristics of greenhouse screening materials. J Agr Eng Res 67: 105-112. http://dx.doi.org/10.1006/jaer.1997.0157

Molina-Aiz FD, 2010. Ventilation simulation and modelling by computational fluid dynamics (CFD) in Almería-type greenhouses. Doctoral thesis. Universidad de Almería, Almería, Spain [In Spanish].

Molina-Aiz FD, Valera DL, Álvarez AJ, 2004. Measurement and simulation of climate inside Almería-type greenhouses using computational fluid dynamics. Agric Forest Meteorol 125: 33-51. http://dx.doi.org/10.1016/j.agrformet.2004.03.009

Molina-Aiz FD, Valera DL, Álvarez AJ, Madue-o A, 2006. A wind tunnel study of airflow through horticultural crops: determination of the drag coefficient. Biosyst Eng 93(4): 447-457. http://dx.doi.org/10.1016/j.biosystemseng.2006.01.016

Molina-Aiz FD, Valera DL, Pe-a AA, Gil JA, López A, 2009. A study of natural ventilation in an Almería-type greenhouse with insect screens by means of tri-sonic anemometry. Biosyst Eng 104: 224-242. http://dx.doi.org/10.1016/j.biosystemseng.2009.06.013

Molina-Aiz FD, Valera DL, López A, Álvarez AJ, Escamirosa C, 2012. Effects of insect-proof screens used in greenhouse on microclimate and fruit yield of tomato (Solanum lycopersicum L.) in a mediterranean climate. Acta Hort 927: 707-714.

Montero JI, Mu-oz P, Anton A, 1997. Discharge coefficients of greenhouse windows with insect-proof screens. Acta Hort 443: 71-77.

Mu-oz P, Montero JI, Antón A, Giuffrida F, 1999. Effect of insect-proof screens and roof openings on greenhouse ventilation. J Agr Eng Res 73: 171-178. http://dx.doi.org/10.1006/jaer.1998.0404

Nield DA, Bejan A, 1998. Convection in porous media. Springer, NY (USA).

Papadakis G, Mermier M, Meneses JF, Boulard T, 1996. Measurement and analysis of air exchange rates in a greenhouse with continuous roof and side openings. J Agr Eng Res 63: 219-228. http://dx.doi.org/10.1006/jaer.1996.0023

Pérez-Parra JJ, Baeza E, Montero JI, Bailey BJ, 2004. Natural ventilation of parral greenhouses. Biosyst Eng 87: 89-100. http://dx.doi.org/10.1016/j.biosystemseng.2003.12.004

Qingyan C, Van der Kooi J, Meyers AT, 1988. Measurements and computations of ventilation efficiency and temperature efficiency in a ventilated room. Energ Buildings 12(2): 85-99. http://dx.doi.org/10.1016/0378-7788(88)90071-0

Shilo E, Teitel M, Mahrer Y, Boulard T, 2004. Air-flow patterns and heat fluxes in roof-ventilated multi-span greenhouse with insect-proof screens. Agric Forest Meteorol 122: 3-20. http://dx.doi.org/10.1016/j.agrformet.2003.09.007

Shipp JL, Wang K, 2003. Evaluation of Amblyseius cucumeris (Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae) for control of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse tomatoes. Biol Control 28: 271-281. http://dx.doi.org/10.1016/S1049-9644(03)00091-4

Tanaka N, Matsuda Y, Kato E, Kokabe K, Furukawa T, Nonomura T, Honda K, Kusakari S, Imura T, Kimbara J, Toyoda H, 2008. An electric dipolar screen with oppositely polarized insulators for excluding whiteflies from greenhouses. Crop Prot 27: 215-221. http://dx.doi.org/10.1016/j.cropro.2007.05.009

Tanny J, Haslavsky V, Teitel M, 2008. Airflow and heat flux through the vertical opening of buoyancy-induced naturally ventilated enclosures. Energ Buildings 40: 637-646. http://dx.doi.org/10.1016/j.enbuild.2007.04.020

Taylor RAJ, Shalhevet S, Spharim I, Berlinger MJ, Lebiush-Mordechi S, 2001. Economic evaluation of insect-proof screens for preventing tomato yellow leaf curl virus of tomatoes in Israel. Crop Prot 20: 561-569. http://dx.doi.org/10.1016/S0261-2194(01)00022-9

Teitel M, 2001. The effect of insect-proof screens in roof openings on greenhouse microclimate. Agric Forest Meteorol 110(1): 13-25. http://dx.doi.org/10.1016/S0168-1923(01)00280-5

Teitel M, 2007. The effect of screened openings on greenhouse microclimate. Agric Forest Meteorol 143(3-4): 159-175. http://dx.doi.org/10.1016/j.agrformet.2007.01.005

Teitel M, Shklyar A, 1998. Pressure drop across insect-proof screens. T ASAE 41(6): 1829-1834. http://dx.doi.org/10.13031/2013.17336

Teitel T, Tanny J, Ben-Yakir D, Barak M, 2005. Airflow patterns through roof openings of a naturally ventilated greenhouse and their effect on insect penetration. Biosyst Eng 92 (3): 341-353. http://dx.doi.org/10.1016/j.biosystemseng.2005.07.013

Teitel M, Liran O, Tanny J, Barak M, 2008. Wind driven ventilation of a mono-span greenhouse with a rose crop and continuous screened side vents and its effect on flow patterns and microclimate. Biosyst Eng 101 (1): 111-122. http://dx.doi.org/10.1016/j.biosystemseng.2008.05.012

Valera DL, Álvarez AJ, Molina FD, Pe-a A, López JA, Madue-o A, 2003. Caracterización geométrica de diferentes tipos de agrotextiles utilizados en invernaderos. Proc II Congreso Nacional de Agroingeniería, Córdoba (Spain), Sept 24-16. pp: 670-675.

Valera DL, Molina FD, Álvarez AJ, López JA, Terrés-Nicoli JM, Madue-o A, 2005. Contribution to characterization of insect-proof screens: experimental measurements in wind tunnel and CFD simulation. Acta Hort 691: 441-448.

Valera DL, Álvarez AJ, Molina FD, 2006. Aerodynamic analysis of several insect-proof screens used in greenhouses. Span J Agric Res 4(4): 273-279. http://dx.doi.org/10.5424/sjar/2006044-204

Van Buggenhout S, Van Brecht A, Eren Özcan S, Vranken E, Van Malcot W, Berckmans D, 2009. Influence of sampling positions on accuracy of tracer gas measurements in ventilated spaces. Biosyst Eng 104: 216-223. http://dx.doi.org/10.1016/j.biosystemseng.2009.04.018

Published
2014-05-07
How to Cite
Lopez-Martinez, A., Valera Martínez, D. L., Molina-Aiz, F., Peña-Fernandez, A., & Marín-Membrive, P. (2014). Microclimate evaluation of a new design of insect-proof screens in a Mediterranean greenhouse. Spanish Journal of Agricultural Research, 12(2), 338-352. https://doi.org/10.5424/sjar/2014122-4956
Section
Agricultural engineering