Application of electrical capacitance measurement for in situ monitoring of competitive interactions between maize and weed plants

  • Imre Cseresnyés Inst. Soil Sci. Agric. Chem. Centre for Agricultural Research, Hungarian Academy of Sciences. Herman Ottó út 15, H-1022 Budapest
  • Tünde Takács Inst. Soil Sci. Agric. Chem. Centre for Agricultural Research, Hungarian Academy of Sciences. Herman Ottó út 15, H-1022 Budapest
  • Anna Füzy Inst. Soil Sci. Agric. Chem. Centre for Agricultural Research, Hungarian Academy of Sciences. Herman Ottó út 15, H-1022 Budapest
  • Krisztina R. Végh Inst. Soil Sci. Agric. Chem. Centre for Agricultural Research, Hungarian Academy of Sciences. Herman Ottó út 15, H-1022 Budapest
  • Éva Lehoczky Inst. Soil Sci. Agric. Chem. Centre for Agricultural Research, Hungarian Academy of Sciences. Herman Ottó út 15, H-1022 Budapest
Keywords: Abutilon theophrasti, biomass loss, Echinochloa crus-galli, maize, root capacitance, root growth, weed competition

Abstract

 

Applicability of root electrical capacitance (EC) measurement for monitoring of crop–weed competition was studied in a pot experiment. Maize (Zea mays L.) was grown both alone and with Echinochloa crus-galli or Abutilon theophrasti in different densities with regular measurement of root EC. Plants were harvested 42 days after planting to determine above- and belowground biomass. Depending on weed density, E. crus-galli-A. theophrasti interaction reduced the root EC of maize by 22–66% and 3–57%, respectively. Competitive effect of crop on weeds and intraspecific competition among weeds could also be detected by EC values: E. crus-galli was less sensitive both to the presence of maize and to intraspecific competition than A. theophrasti. Strong linear correlations between root dry mass and root EC for crop and weeds (with R2 from 0.901 to 0.956) were obtained by regression analyses at the end of the experiment. EC monitoring informed us on the emergence time of competition: E. crus-galli interfered with maize root growth a week earlier then A. theophrasti, and increasing weed densities accelerated the emergence of competition. In conclusion, the simple, non-destructive EC method should be considered a potential in situ technique for pot studies on crop–weed competition, which may partially substitute the intrusive techniques commonly used in agricultural researches.


Downloads

Download data is not yet available.

References

Aubrecht L, Staněk Z, Koller J, 2006. Electrical measurement of the absorption surfaces of tree roots by the earth impedance methods: 1. Theory. Tree Physiol 26: 1105-1112. http://dx.doi.org/10.1093/treephys/26.9.1105

Bajwa AA, Jabran K, Shahid M, Ali HH, Chauhan BS, 2015. Eco-biology and management of Echinochloa crus-galli. Crop Prot 75: 151-162. http://dx.doi.org/10.1016/j.cropro.2015.06.001

Beem J van, Smith ME, Zobel RW, 1998. Estimating root mass in maize using a portable capacitance meter. Agron J 90: 566-570. http://dx.doi.org/10.2134/agronj1998.00021962009000040021x

Bonifas KD, Lindquist JL, 2006. Predicting biomass partitioning to root versus shoot in corn and velvetleaf (Abutilon theophrasti). Weed Sci 54: 133-137. http://dx.doi.org/10.1614/WS-05-079R1.1

Cao Y, Repo T, Silvennoinen R, Lehto T, Pelkonen P, 2010. An appraisal of the electrical resistance method for assessing root surface area. J Exp Bot 61: 2491-2497. http://dx.doi.org/10.1093/jxb/erq078

Čermák J, Ulrich R, Staněk Z, Koller J, Aubrecht L, 2006. Electrical measurement of tree root absorbing surfaces by the earth impedance method: 2. Verification based on allometric relationships and root severing experiments. Tree Physiol 26: 1113-1121. http://dx.doi.org/10.1093/treephys/26.9.1113

Chauhan BS, Abugho SB, 2013. Effect of water regime, nitrogen fertilization, and rice plant density on growth and reproduction of lowland weed Echinochloa crus-galli. Crop Prot 54: 142-147. http://dx.doi.org/10.1016/j.cropro.2013.08.005

Chloupek O, 1972. The relationship between electric capacitance and some other parameters of plant roots. Biol Plantarum 14: 227-230. http://dx.doi.org/10.1007/BF02921255

Chloupek O, Forster BP, Thomas WTB, 2006. The effect of semi-dwarf genes on root system size in field-grown barley. Theor Appl Genet 112: 779-786. http://dx.doi.org/10.1007/s00122-005-0147-4

Chloupek O, Dostál V, Středa T, Psota V, Dvořáčková O, 2010. Drought tolerance of barley varieties in relation to their root system size. Plant Breeding 129: 630-636. http://dx.doi.org/10.1111/j.1439-0523.2010.01801.x

Craine JM, Dybzinski R, 2013. Mechanisms of plant competition for nutrients, water and light. Funct Ecol 27: 833-840. http://dx.doi.org/10.1111/1365-2435.12081

Cseresnyés I, Rajkai K, Vozáry E, 2013a. Role of phase angle measurement in electrical impedance spectroscopy. Int Agrophys 27: 377-383. http://dx.doi.org/10.2478/intag-2013-0007

Cseresnyés I, Takács T, Végh RK, Anton A, Rajkai K, 2013b. Electrical impedance and capacitance method: a new approach for detection of functional aspects of arbuscular mycorrhizal colonization in maize. Eur J Soil Biol 54: 25-31. http://dx.doi.org/10.1016/j.ejsobi.2012.11.001

Dalton FN, 1995. In-situ root extent measurements by electrical capacitance methods. Plant Soil 173: 157-165. http://dx.doi.org/10.1007/BF00155527

Dietrich RC, Bengough AG, Jones HG, White PJ, 2012. A new physical interpretation of plant root capacitance. J Exp Bot 63: 6149-6159. http://dx.doi.org/10.1093/jxb/ers264

Ellis T, Murray W, Kavalieris L, 2013a. Electrical capacitance of bean (Vicia faba) root systems was related to tissue density – A test for the Dalton Model. Plant Soil 366: 575-584. http://dx.doi.org/10.1007/s11104-012-1424-z

Ellis T, Murray W, Paul K, Kavalieris L, Brophy J, Williams C, Maass M, 2013b. Electrical capacitance as a rapid non-invasive indicator of root length. Tree Physiol 33: 3-17. http://dx.doi.org/10.1093/treephys/tps115

Gao S, Pan WL, Koenig RT, 1998. Integrated root system age in relation to plant nutrient uptake activity. Agron J 90: 505-510. http://dx.doi.org/10.2134/agronj1998.00021962009000040011x

Heřmanská A, Středa T, Chloupek O, 2015. Improved wheat grain yield by a new method of root selection. Agron Sustain Dev 35: 195-202. http://dx.doi.org/10.1007/s13593-014-0227-4

Holm LG, Plucknett DL, Pancho JV, Herberger JP, 1991. The world's worst weeds: Distribution and biology. Krieger Publ. Co., Malabar, FL, USA. 391 pp.

Hyvönen T, Ramula S, 2014. Crop–weed competition rather than temperature limits the population establishment of two annual C4 weeds at the edge of their northern range. Weed Res 54: 245-255. http://dx.doi.org/10.1111/wre.12075

Kazinczi G, Béres I, Narwal SS, 2001. Allelopathic plants. 3. Velvetleaf (Abutilon theophrasti Medic.). Allelopathy J 8: 179-188.

Lehoczky É, Márton L, Nagy P, 2013. Competition for nutrients between cold-tolerant maize and weeds. Commun Soil Sci Plant Anal 44: 526-534. http://dx.doi.org/10.1080/00103624.2013.744156

Lindquist JL, Barker DC, Knezevic SZ, Martin AR, Walters DT, 2007. Comparative nitrogen uptake and distribution in corn and velvetleaf (Abutilon theophrasti). Weed Sci 55: 102-110. http://dx.doi.org/10.1614/WS-06-141.1

Martinková Z, Honěk A, 1998. Competition between maize and barnyard grass (Echinochloa crus-galli) at different moisture regimes. Rost Výroba 44: 65-69.

McBride R, Candido M, Ferguson J, 2008. Estimating root mass in maize genotypes using the electrical capacitance method. Arch Agron Soil Sci 54: 215-226. http://dx.doi.org/10.1080/03650340701790658

Nagy V, Nádasy E, Lehoczky É, 2014. Study on the competitive ability of velvetleaf (Abutilon theophrasti Medic.) in a field experiment in parsley. Herbologia 12: 115-128.

Nakhforoosh A, Grausgruber H, Kaul H-P, Bodner G, 2014. Wheat root diversity and root functional characterization. Plant Soil 380: 211-229. http://dx.doi.org/10.1007/s11104-014-2082-0

Ozier-Lafontaine H, Bajazet T, 2005. Analysis of root growth by impedance spectroscopy (EIS). Plant Soil 277: 299-313. http://dx.doi.org/10.1007/s11104-005-7531-3

Perera KK, Ayres PG, Gunasena HPM, 1992. Root-growth and the relative importance of root and shoot competition in interaction between rice (Oryza sativa) and Echinochloa grus-galli. Weed Res 32: 67-76. http://dx.doi.org/10.1111/j.1365-3180.1992.tb01863.x

Pitre FE, Brereton NJB, Audoire S, Richter GM, Shield I, Karp A, 2010. Estimating root biomass in Salix viminalis × Salix schwerinii cultivar ´Olof´ using the electrical capacitance method. Plant Biosyst 144: 479-483. http://dx.doi.org/10.1080/11263501003732092

Preston GM, McBride RA, Bryan J, Candido M, 2004. Estimating root mass in young hybrid poplar trees using the electrical capacitance method. Agroforest Syst 60: 305-309. http://dx.doi.org/10.1023/B:AGFO.0000024439.41932.e2

Qaderi MM, Slauenwhite KLI, Reid DM, McKay RM, 2015. Does temperature regulate light quality effects on Abutilon theophrasti? Acta Physiol Plant 37: 125. http://dx.doi.org/10.1007/s11738-015-1878-8

Rajcan I, Swanton CJ, 2001. Understanding maize–weed competition: resource competition, light quality and the whole plant. Field Crop Res 71: 139-150. http://dx.doi.org/10.1016/S0378-4290(01)00159-9

Rajkai K, Végh RK, Nacsa T, 2005. Electrical capacitance of roots in relation to plant electrodes, measuring frequency and root media. Acta Agron Hung 53: 197-210. http://dx.doi.org/10.1556/AAgr.53.2005.2.8

Sattin M, Zanin G, Berti A, 1992. Case-history for weed competition/population ecology: velvetleaf (Abutilon theophrasti) in corn (Zea mays). Weed Technol 6: 213-219.

Svačina P, Středa T, Chloupek O, 2014. Uncommon selection by root system size increases barley yield. Agron Sustain Dev 34: 545-551. http://dx.doi.org/10.1007/s13593-013-0160-y

Traore S, Lindquist JL, Mason SC, Martin AR, Mortensen DA, 2002. Comparative ecophysiology of grain sorghum and Abutilon theophrasti in monoculture and in mixture. Weed Res 42: 65-75. http://dx.doi.org/10.1046/j.1365-3180.2002.00263.x

Trinder CJ, Brooker RW, Robinson D, 2013. Plant competition, temporal niches and implications for productivity and adaptability to climate change in water-limited environments. Funct Ecol 27: 886-897. http://dx.doi.org/10.1111/1365-2435.12115

Warwick SI, Black LD, 1988. The biology of Canadian weeds. 90. Abutilon theophrasti. Can J Plant Sci 68: 1069-1085. http://dx.doi.org/10.4141/cjps88-127

Published
2016-06-01
How to Cite
Cseresnyés, I., Takács, T., Füzy, A., Végh, K. R., & Lehoczky, Éva. (2016). Application of electrical capacitance measurement for in situ monitoring of competitive interactions between maize and weed plants. Spanish Journal of Agricultural Research, 14(2), e0904. https://doi.org/10.5424/sjar/2016142-7562
Section
Plant production (Field and horticultural crops)