Modelo de preferencia multiatributo para la planificación óptima de cultivos de regadío en condiciones de escasez de agua

  • A. Montazar Department of Irrigation and Drainage Engineering, University of Tehran, Campus of Abouraihan. Pakdasht
  • R. L. Snyder Department of Land, Air, and Water Resources, University of California, Davis
Palabras clave: enfoque multicriterio, distrito de riego Koohdasht, planificación de cultivos, proceso de jerarquía analítica

Resumen

La sostenibilidad de los recursos hídricos tiene un papel clave en la existencia y durabilidad de los sistemas agrícolas de riego y depende en gran medida de la planificación de los cultivos. El proceso de decisión es complejo, debido a una serie de restricciones y el deseo de asegurar la diversificación de los cultivos y la participación de diversos parámetros afectados. El objetivo del presente estudio fue desarrollar un modelo multicriterio completo para seleccionar una combinación adecuada de cultivo en un distrito de riego con escasez hídrica. La planificación de un sistema óptimo de cultivos en regadíos se realizó considerando once y nueve atributos de decisión para jerarquizar el tipo de cultivo y su porcentaje de superficie, respectivamente. Los resultados indican que el enfoque de preferencia de atributos múltiples puede sintetizar varios conjuntos de criterios en la selección del tipo de cultivo y la superficie cultivada. El análisis de validación muestra que las preferencias generadas por el modelo propuesto están razonablemente de acuerdo con las obtenidas en el modelo de uso del agua. En consecuencia, el modelo podría ser utilizado para agregar preferencias a fin de obtener una decisión de grupo, mejorar la comprensión del problema de elección, adaptarse a múltiples objetivos y aumentar la transparencia y la credibilidad en la toma de decisiones en las que la planificación de cultivos esté involucrada.

Descargas

La descarga de datos todavía no está disponible.

Citas

Alphonce CB, 1997. Application of the analytical hierarchy process in agriculture in developing countries. Agr Syst 53: 97-112.
http://dx.doi.org/10.1016/S0308-521X(96)00035-2

Al-zahrani MA, Ahmad AM, 2004. Stochastic goal programming model for optimal blending of desalinated water with groundwater. Water Resour Manage 18: 339-352.
http://dx.doi.org/10.1023/B:WARM.0000048487.05662.88

Amini Fasakhodi, A, Nouri SH, Amini M, 2010. Water resources sustainability and optimal cropping pattern in farming systems: A multi-objective fractional goal programming approach. Water Resour Manage 24(15): 4639-4657.
http://dx.doi.org/10.1007/s11269-010-9683-z

Ananda J, Herath D, 2008. Multi-attribute preference modelling and regional land-use planning. Ecol Econ 65: 325-335.
http://dx.doi.org/10.1016/j.ecolecon.2007.06.024

Bouma J, Brouwer R, van Ek R, 2000. The use of integrated assessment methods in Dutch water management: a comparison of cost-benefit and multi-criteria analysis. III Int Conf Eur Soc Ecol Econ, Vienna, 3-6 May.

Bravo M, Gonzalez I, 2009. Applying stochastic goal programming: a case study on water use planning. Eur J Oper Res 196(3): 1123-1129.
http://dx.doi.org/10.1016/j.ejor.2008.04.034

Expert Choice, 2000. Expert choice software and manual. Expert Choice Inc., Pittsburgh, PA, USA.

Gore KP, Panda PK, 2009. Development of multi objective plan using fuzzy technique for optimal cropping pattern in command area of Aundha Minor Irrigation Project of Maharashtra State, India (Li D, Chunjiang Z, eds). IFIP Int Fed Inform Process, Vol 293, Springer, Boston, pp: 735-741.

Hayashi K, 2000. Multi-criteria analysis for agricultural resource management: A critical survey and future perspectives. Eur J Oper Res 122: 486-500.
http://dx.doi.org/10.1016/S0377-2217(99)00249-0

Khare D, Jat MK, Ediwahyunan, 2006. Assessment of conjunctive use of planning options: a case study of sapon irrigation command area of Indonesia. J Hydrol 328: 764-777.
http://dx.doi.org/10.1016/j.jhydrol.2006.01.018

Montazar A, 2010. Optimization of cropping pattern based on water resources in Koohdasht area. LRWA of Iran, Ministry of Energy, Research no. 13271-32. [In Persian].

Montazar A, 2011. A decision tool for optimal irrigated crop planning and water resources sustainability. J Global Optim 1 Nov: pp. 1-17.

Montazar A, Behbahani SM, 2007. Development of an optimized irrigation system selection model using analytical hierarchy process. Biosyst Eng 98: 155-165.
http://dx.doi.org/10.1016/j.biosystemseng.2007.06.003

Montazar A, Zadbagher E, 2010. An analytical hierarchy model for assessing global water productivity of irrigation networks in Iran. Water Resour Manage 24: 2817-2832.
http://dx.doi.org/10.1007/s11269-010-9581-4

Munda G, 2000. Conceptualising and responding to complexity. In: Environmental valuation in Europe (Spash C, Carter C, eds.). Policy Research Brief, vol. 2. Cambridge Res Environ, Cambridge, UK.

Okada H, Styles SW, Grismer ME, 2008a. Application of the analytic hierarchy process to irrigation project improvement, Part I. Impacts of irrigation project internal processes on crop yields. Agr Water Manage 95: 199-204.
http://dx.doi.org/10.1016/j.agwat.2007.10.003

Okada H, Styles SW, Grismer ME, 2008b. Application of the analytic hierarchy process to irrigation project improvement, Part II. How professionals evaluate an irrigation project for its improvement. Agr Water Manage 95: 205-210.
http://dx.doi.org/10.1016/j.agwat.2007.10.002

Omann I, 2000. How can multi-criteria decision analysis contribute to environmental policy making? A case study on macro-sustainability in Germany. III Int Conf Eur Soc Ecol Econ, Vienna, Austria, May 3-6.

Saaty TL, 1980. The analytic hierarchy process. McGraw-Hill.

Saaty TL, 1987. The analytic hierarchy process - What it is and how it is used. Math Model 9: 161-176.
http://dx.doi.org/10.1016/0270-0255(87)90473-8

Saaty TL, 2005. The analytic hierarchy and analytic network process for the measurement of intangible criteria and for decision making. In: Multiple criteria decision analysis: state of the art surveys (Figueira J, Salvatore G, Ehrgott M, eds). Springer, Berlin Heidelberg NY, pp: 345-407.

Shangguan Z, Shao M, Horton R, 2002. A model for regional optimal allocation of irrigation water resources under deficit irrigation and its applications. J Agr Water Manage 52: 139-154.
http://dx.doi.org/10.1016/S0378-3774(01)00116-0

Sharma DK, Jana RK, 2009. Fuzzy goal programming based genetic algorithm approach to nutrient management for rice crop planning. Int J Prod Econ 121: 224-232.
http://dx.doi.org/10.1016/j.ijpe.2009.05.009

Srdjevic B, Medeiros YDP, 2008. Fuzzy AHP assessment of water management plans. Water Resour Manage 22: 877-894.
http://dx.doi.org/10.1007/s11269-007-9197-5

Tsakiris G, Spiliotis M, 2006. Cropping pattern planning under water supply from multiple sources. Irrig Drain Syst 20: 57-68.
http://dx.doi.org/10.1007/s10795-006-5426-y

Vivekanandan N, Viswanathan K, Gupta S, 2009. Optimization of cropping pattern using goal programming approach. Opsearch 46(3): 259-274.
http://dx.doi.org/10.1007/s12597-009-0017-y

Zahang H, 2009. The analysis of the reasonable structure of water conservancy investment of capital construction in China by AHP method. Water Resour Manage 23: 118.
http://dx.doi.org/10.1007/s11269-008-9261-9

Publicado
2012-05-30
Cómo citar
Montazar, A., & Snyder, R. L. (2012). Modelo de preferencia multiatributo para la planificación óptima de cultivos de regadío en condiciones de escasez de agua. Spanish Journal of Agricultural Research, 10(3), 826-837. https://doi.org/10.5424/sjar/2012103-484-11
Sección
Water management