Soil organic carbon accumulation and carbon dioxide emissions during a 6-year study in irrigated continuous maize under two tillage systems in semiarid Mediterranean conditions

  • Maroua Dachraoui Instituto Tecnológico Agrario de Castilla y León (ITACyL). Ctra. Burgos Km. 119, 47071 Valladolid
  • Aurora Sombrero Instituto Tecnológico Agrario de Castilla y León (ITACyL). Ctra. Burgos Km. 119, 47071 Valladolid
Keywords: CO2 emissions, conventional tillage, no-tillage, soil organic carbon

Abstract

Aim of study: To evaluate the effects of conventional tillage (CT) and no tillage (NT) systems on the soil organic carbon (SOC) changes, CO2 emissions and their relation with soil temperature and grain yield in a monoculture of irrigated maize during six years.

Area of study: In Zamadueñas experimental field in the Spanish province of Valladolid, from 2011 to 2017.

Material and methods: The SOC content was determined by collecting soil samples up to 30 cm in November at two years interval. Short-term CO2 emissions were measured simultaneously with soil temperature using a respiration chamber and a hand-held probe immediately before, after every tillage operation and during the maize cycle.

Main results: The SOC stock of the top 30 cm soil layers was 13% greater under NT than CT. Short-term CO2 emissions were significantly higher under CT ranging from 0.8 to 3.4 g CO2 m-2 h-1 immediately after tillage while under NT system, soil CO2 fluxes were low and stable during this study period. During the first 48 h following tillage, cumulative CO2 emissions ranged from 0.6 to 2.4 Mg CO2 ha-1 and from 0.2 to 0.3 Mg CO2 ha-1 under CT and NT systems, respectively. Soil temperature did not show significant correlation with CO2 emissions; however, it depended mostly on the time of measurement.

Research highlights: No tillage increased the SOC accumulation in the topsoil layer, reduced CO2 emissions without decreasing maize grain yield and minimized the impact on climate change compared to CT system.

Downloads

Download data is not yet available.

References

Al-Kaisi M, Licht MA, 2004. Effect of strip tillage on corn nitrogen uptake and residual soil nitrate accumulation compared with no-tillage and chisel plow. Agron J 96 (4): 1164-1171. https://doi.org/10.2134/agronj2004.1164

Al-Kaisi, M., Yin, X. 2005, Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotations. J of Environ Qual 34: 437- 445. https://doi.org/10.2134/jeq2005.0437

Almaraz, J. J., Zhoub, X., Mabood, F., Madramootoo, C., Rochette, P., Ma, B.L., Smith, D.L, 2009. Greenhouse gas fluxes associated with soybean production under two tillage systems in southwestern Quebec. Soil Till Res 104(1): 134-139. https://doi.org/10.1016/j.still.2009.02.003

Alvarez R, Alvarez CR, Lorenzo G, 2001. Carbon dioxide fluxes following tillage from a mollisol in the Argentine rolling Pampa. Eur J Soil Biol 37: 161-166. https://doi.org/10.1016/S1164-5563(01)01085-8

Álvaro-Fuentes, J., Cantero-Martínez, C., López, M.V., Arrúe, J.L. 2007. Soil carbon dioxide fluxes following tillage in semiarid Mediterranean agroecosystems. Soil Till Res 96: 331-341. https://doi.org/10.1016/j.still.2007.08.003

Aon MA, Sarena DE, Burgos JL, Cortassa S, 2001. Interaction between gas exchange rates and physical and microbiological properties in soils recently subjected to agriculture. Soil Till Res 60: 163-171. https://doi.org/10.1016/S0167-1987(01)00191-X

Balota EL, Kanashiro M, Filho AC, Andrade DS, Dick RP, 2004. Soil enzyme activities under long-term tillage and crop rotation systems in subtropical agroecosystems. Braz J Microbiol 35: 300-306. https://doi.org/10.1590/S1517-83822004000300006

Basamba TA, Amezquita E, Singh BR, Rao IM, 2006. Effects of tillage systems on soil physical properties, root distribution and maize yield on a Colombian acid-savanna oxisol. Acta Agr Scand. B-Soil Plant Sc 56 (4): 255-262. https://doi.org/10.1080/09064710500297690

Blanco-Canqui, H, 2013. Crop residue removal for bioenergy reduces soil carbon pools: how can we offset carbon losses? Bioenergy Res 6: 358-371. https://doi.org/10.1007/s12155-012-9221-3

Brouder SM, Gomez-Macpherson H, 2014. The impact of conservation agriculture on smallholder agricultural yields: A scoping review of the evidence. Agric Ecosyst Environ 187: 11-32. https://doi.org/10.1016/j.agee.2013.08.010

Cantero-Martínez C, Angás P, Lampurlanés J, 2003. Growth, yield and water productivity of barley (Hordeum vulgare L.) affected by tillage and N fertilization in Mediterranean semiarid, rainfed conditions of Spain. Field Crops Res 84: 341-357. https://doi.org/10.1016/S0378-4290(03)00101-1

Carbonell-Bojollo R, González-Sánchez EJ, Veróz-González O, Ordóñez-Fernández R, 2011. Soil management systems and short-term CO2 emissions in a clayey soil in southern Spain. Sci Total Environ 409 (15): 2929-2935. https://doi.org/10.1016/j.scitotenv.2011.04.003

Curtin D, Wang H, Selles F, McConkey BG, Campbell CA, 2000. Tillage effects on carbon fluxes in continuous wheat and fallow-wheat rotations. Soil Sci Soc Am J 64: 2080-2086. https://doi.org/10.2136/sssaj2000.6462080x

Das A, Ghosh PK, Verma MR, Munda GC, Ngachan SV, Mandal D, 2015. Tillage and residue mulching effect on productivity of maize (Zea mays)-toria (Brassica campestris) cropping system in fragile ecosystem. Exp Agric 51 (1): 107-125. https://doi.org/10.1017/S0014479714000179

De Bona FD, Bayer C, Bergamaschi H, Dieckow J, 2006. Soil organic carbon in sprinkler irrigation systems under no-till and conventional tillage. Revista Brasileira de Ciencia do Solo 30 (5): 911-919. https://doi.org/10.1590/S0100-06832006000500017

Dimassi B, Mary B, Fontaine S, Perveen N, Revaillot S, Cohan J, 2014. Effect of nutrients availability and long-term tillage on priming effect and soil C mineralization. Soil Biol Biochem 78: 332-339. https://doi.org/10.1016/j.soilbio.2014.07.016

Franzluebbers AJ, Hons FM, Zuberer DA, 1995. Tillage induced seasonal changes in soil physical properties affecting soil CO2 evolution under intensive cropping. Soil Till Res 34: 41-60. https://doi.org/10.1016/0167-1987(94)00450-S

Halvorson AD, Del Grosso SJ, Reule CA, 2008. Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems. J Environ Qual 37: 1337-1344. https://doi.org/10.2134/jeq2007.0268

Hanson PJ, Edwards NT, Garten CT, Andrews JA, 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48: 115-146. https://doi.org/10.1023/A:1006244819642

Huang M, Liang T, Wang L, Zhou C, 2015. Effects of no-tillage systems on soil physical properties and carbon sequestration under long-term wheat-maize double cropping system. Catena 128: 195-202. https://doi.org/10.1016/j.catena.2015.02.010

Izquierdo I, Caravaca F, Alguacil MM, Roldan A, 2003. Changes in physical and biological soil quality indicators in a tropical crop system (Havana, Cuba) in response to different agroecological management practices. Environ Manage 32 (5): 639-645. https://doi.org/10.1007/s00267-003-3034-2

Kuzyakov Y, Domanski G, 2000. Carbon input by plants into the soil: Review. J Plant Nut Soil Sci 163 (4): 421-431 https://doi.org/10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R

Lal R, 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304, 5677: 1623-1627. https://doi.org/10.1126/science.1097396

Lal R, 2007. Farming carbon. Soil Till Res 96: 1-5. https://doi.org/10.1016/j.still.2007.06.001

Lampurlanés J, Angás P, Cantero-Martínez C, 2001. Root growth, soil water content and yield of barley under different tillage systems on two soils in semiarid conditions. Field Crops Res 69: 27-40. https://doi.org/10.1016/S0378-4290(00)00130-1

Lenka NK, Lal R, 2013. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil Till Res 126: 78-89. https://doi.org/10.1016/j.still.2012.08.011

Luo Z, Wang E, Sun OJ, 2010. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric Ecosyst Environ 139: 224-231. https://doi.org/10.1016/j.agee.2010.08.006

MAPAMA, 2019. Encuesta sobre superficies y rendimientos de cultivos. Análisis de las técnicas de mantenimiento del suelo y de los métodos de siembra en España. Ministerio de Agricultura, Alimentación y Medio Ambiente, España.

Moitinho. MR, Padovan MP, Panosso AR, La Scala N, 2013. Effect of soil tillage and sugarcane trash on CO2 emission. R Bras Ci Solo 37: 1720-1728. https://doi.org/10.1590/S0100-06832013000600028

Nie XJ, Zhang JH, Cheng JX, Gao H, Guan ZM, 2016. Effect of soil redistribution on various organic carbons in a water- and tillage-eroded soil. Soil Till Res 155: 1-8. https://doi.org/10.1016/j.still.2015.07.003

Obalum SE, Amalu UC, Obi ME, Wakatsuki T, 2011. Soil water balance and grain yield of sorghum under no-till versus conventional tillage with surface mulch in the derived savanna zone of southeastern Nigeria. Exp Agric 47 (1): 89-109. https://doi.org/10.1017/S0014479710000967

Omonode RA, Vyn TJ, Smith DR, Hegymegi P, Gal A, 2007. Soil carbon dioxide and methane fluxes from long-term tillage systems in continuous corn and corn-soybean rotations. Soil Till Res 95: 182-195. https://doi.org/10.1016/j.still.2006.12.004

Pareja-Sanchez E, Cantero-Martiez C, Alvaro-Fuentes J, Plaza-Bonilla D, 2019. Tillage and nitrogen fertilization in irrigated maize: Key practices to reduce soil CO2 and CH4 emissions. Soil Till Res 191: 29-36. https://doi.org/10.1016/j.still.2019.03.007

Paustian K, Andren O, Janzen HH, Lal R, Smith P, Tian G, Tiessen H, Van Noordwijk M, Woomer PL, 1997a. Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manag 13: 230-244. https://doi.org/10.1111/j.1475-2743.1997.tb00594.x

Paustian K, Andren O, Janzen HH, Lal R, Smith P, Tian G, 1997b. Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manage 83: 65-73. https://doi.org/10.1111/j.1475-2743.1997.tb00594.x

Pittelkow CM, Linquist BA, Lundy ME, Liang X, Van Groenigen KJ, Lee J, Van Gestel N, Six J, Venterea RT, Van Kessel C, 2015. When does no-till yield more? A global meta-analysis. Field Crops Res 183: 156-168. https://doi.org/10.1016/j.fcr.2015.07.020

Prior SA, Reicosky DC, Reeves DW, Runion GB, Raper RL, 2000. Residue and tillage effects on planting implement-induced short-term CO2 and water loss from a loamy sand soil in Alabama. Soil Till Res 54: 197-199. https://doi.org/10.1016/S0167-1987(99)00092-6

Pumpanen J, Kolari P, Ilvesniemi H, Minkkinen K, Vesala T, Niinisto S, et al, 2004. Comparison of different chamber techniques for measuring soil CO2 efflux. Agric For Meteorol 123: 159-176. https://doi.org/10.1016/j.agrformet.2003.12.001

Rakotovao NH, Razafimbelo TM, Rakotosamimanana S, Randrianasolo Z, Randriamalala JR, Albrecht A, 2017. Carbon footprint of smallholder farms in central Madagascar: the integration of agroecological practices. J Clean Prod 140 (3): 1165-1175. https://doi.org/10.1016/j.jclepro.2016.10.045

Reicosky DC, Dugas WA, Torbert HA, 1997. Tillage-induced soil carbon dioxide loss from different cropping systems. Soil Till Res 41: 105-118. https://doi.org/10.1016/S0167-1987(96)01080-X

Reicosky DC, Archer DW, 2007. Mouldboard plow tillage depth and short-term carbon dioxide release. Soil Till Res 94: 109-121. https://doi.org/10.1016/j.still.2006.07.004

Rochette P, Flanagan LB, Gregorich EG, 1999. Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13. Soil Sci Soc Am J 63: 1207-1213. https://doi.org/10.2136/sssaj1999.6351207x

Rodríguez-Bragado L, 2015. Efectos del sistema de laboreo sobre las propiedades y calidad del suelo, dinámica del agua de riego y producción del cultivo de maíz. Doctoral Thesis, Univ. Valladolid, ETSIA, Palencia.

Roldan A, Caravaca F, Hernandez MT, Garcia C, Sanchez-Brito C, Velasquez M, Tiscareno M, 2003. No-tillage, crop residue additions, and legume cover cropping effects on soil quality characteristics under maize in Patzcuaro watershed (Mexico). Soil Till Res 72 (1): 65-73. https://doi.org/10.1016/S0167-1987(03)00051-5

Roldan A, Salinas-Garcia JR, Alguacil MM, Diaz E, Caravaca F, 2005. Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions. Geoderma 129 (3-4): 178-185. https://doi.org/10.1016/j.geoderma.2004.12.042

Salem HM, Valero C, Angel Munoz M, Gil Rodriguez M, Silva LL, 2015. Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma 237: 60-70. https://doi.org/10.1016/j.geoderma.2014.08.014

Silva B, Moitinho MB, Santos G, Teixeira D, Fernandes C, La Scala NJ, 2019. Soil CO2 emission and short-term soil pore class distribution after tillage operations. Soil Till Res 186: 224-232. https://doi.org/10.1016/j.still.2018.10.019

Six J, Elliott ET, Paustian K, 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32: 2099-2103. https://doi.org/10.1016/S0038-0717(00)00179-6

Sombrero A, De Benito A, 2010. Carbon accumulation in soil. Ten-year study of conservation tillage and crop rotation in a semi-arid area of Castile-Leon, Spain. Soil Till Res 107 (2): 64-70. https://doi.org/10.1016/j.still.2010.02.009

Thierfelder C, Matemba-Mutasa R, Rusinamhodzi L, 2015. Yield response of maize (Zea mays L.) to conservation agriculture cropping system in southern Africa. Soil Till Res 146: 230-242. https://doi.org/10.1016/j.still.2014.10.015

Traore S, Thiombiano L, Millogo JR, Guinko S, 2007. Carbon and nitrogen enhancement in cambisols and vertisols by Acacia spp. in eastern Burkina Faso: Relation to soil respiration and microbial biomass. Appl Soil Ecol 35 (3): 660-669. https://doi.org/10.1016/j.apsoil.2006.09.004

Ussiri DAN, Lal R, 2009. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Till Res 104: 39-47. https://doi.org/10.1016/j.still.2008.11.008

Vanhie M, Deen W, Lauzon JD, Hooker DC, 2015. Effect of increasing levels of maize (Zea mays L.) residue on no-till soybean (Glycine max Merr.) in northern production regions: A review. Soil Till Res 150: 201-210. https://doi.org/10.1016/j.still.2015.01.011

Varvel GE, Wilhelm W, 2008. Soil carbon levels in irrigated western Corn Belt rotations. Agron J 100: 1180-1184. https://doi.org/10.2134/agronj2007.0383

Vinten AJA, Ball BC, O'Sullivan MF, Henshall JK, 2002. The effects of cultivation method, fertilizer input and previous sward type on organic C and N storage and gaseous losses under spring and winter barley following long-term leys. J Agric Sci 139 (3): 231-243. https://doi.org/10.1017/S0021859602002496

Wen-Guang T, Xiao-Ping X, Hai-Lin Z, Zhong-Du C, Jian-Fu X, 2015. Effects of long-term tillage and rice straw returning on soil nutrient pools and Cd concentration. Yingyong Shengtai Xuebao 26 (1): 168-176.

West TO, Post WM, 2002. Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J 66 (6): 1930-1946. https://doi.org/10.2136/sssaj2002.1930

Yang X, Wander MM, 1999. Influence of tillage on the dynamics of loose-and occluded-particulate and humified organic matter fractions. Soil Biol Biochem 32 (8): 1151-1160. https://doi.org/10.1016/S0038-0717(00)00031-6

Zhang X, 2012. Cropping and tillage systems effects on soil erosion under climate change in Oklahoma. Soil Sci Soc Am J 76 (5): 1789-1797. https://doi.org/10.2136/sssaj2012.0085

Zhang W, He X, Zhang Z, Gong S, Zhang Q, Zhang W, Liu D, Zou C, Chen X, 2018. Carbon footprint assessment for irrigated and rainfed maize (Zea mays L.) production of the loess plateau of China. Biosyst Eng 167: 75-86. https://doi.org/10.1016/j.biosystemseng.2017.12.008

Published
2021-04-16
How to Cite
Dachraoui, M., & Sombrero, A. (2021). Soil organic carbon accumulation and carbon dioxide emissions during a 6-year study in irrigated continuous maize under two tillage systems in semiarid Mediterranean conditions. Spanish Journal of Agricultural Research, 19(1), e1102. https://doi.org/10.5424/sjar/2021191-16260
Section
Soil science