Electrocution and containment methods to reduce the activity of red palm weevil (Rhynchophorus ferrugineus, Ol.)

  • Marco Fedrizzi Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari. Via della Pascolare 16, 00015 Monterotondo (Rome)
  • Mauro Pagano Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari. Via della Pascolare 16, 00015 Monterotondo (Rome)
  • Mirko Guerrieri Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari. Via della Pascolare 16, 00015 Monterotondo (Rome)
  • Roberto Tomasone Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari. Via della Pascolare 16, 00015 Monterotondo (Rome)
  • Sergio Musmeci ENEA, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile. SSPT-BIOAG and TERIN-BBC Divisions. Casaccia Via Anguillarese 301, 00123 S. Maria di Galeria (Rome)
  • Silvia Arnone ENEA, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile. SSPT-BIOAG and TERIN-BBC Divisions. Casaccia Via Anguillarese 301, 00123 S. Maria di Galeria (Rome)
  • Raffaele Sasso ENEA, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile. SSPT-BIOAG and TERIN-BBC Divisions. Casaccia Via Anguillarese 301, 00123 S. Maria di Galeria (Rome)
  • Massimo Cristofaro ENEA, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile. SSPT-BIOAG and TERIN-BBC Divisions. Casaccia Via Anguillarese 301, 00123 S. Maria di Galeria (Rome)
  • Francesca Antonucci Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari. Via della Pascolare 16, 00015 Monterotondo (Rome)
  • Enrico Santangelo Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari. Via della Pascolare 16, 00015 Monterotondo (Rome)
Keywords: integrated pest management, date palm, Canary palm, pesticides, principal coordinates analysis

Abstract

Aim of study: To evaluate the susceptibility of the Rhynchophorus ferrugineus to electric discharges, to eventually use this application in synergy with other methods as part of an integrated control strategy.

Area of study: Worldwide.

Material and methods: Three different electric voltage intensities were applied to R. ferrugineus to investigate the insect’s susceptibility in both adult and larval stages. The transmission and diffusion of electricity within a portion of the palm tree was tested. In addition, the suitability of containment materials for handling and transportation of plant residues was tested.

Main results: The results of adult test showed that the total number of eggs laid per mating couple and the number of larvae born were about 1.5 times higher in the control compared to the electrified samples. The duration of the electric discharge on larvae had a small impact on the mortality rate, while the electric voltage showed a strong impact on mortality (87% for 10 V and 99% for 15 V). The presence of a significant electric current was observed in a viable portion of stem (distance from the source of electricity 10 cm) providing a direct current with 250 V tension. Among the materials tested for the transportation of palm residues, the aluminium net sheet showed the best results in the containment of both larval and adult individuals.

Research highlights: Electrocution has proven to be a system which can help in the control of red palm weevil reducing the use of synthetic chemicals.

Downloads

Download data is not yet available.

References

Abraham VA, Al Shuaibi MA, Faleiro JR, Abuzuhairah RA, Vidyasagar PSPV, 1998. An integrated management approach for red palm weevil, Rhynchophorus ferrugineus Oliv., a key pest of date palm in the Middle East. Sultan Qabus Univ J Sci Res Agr Sci 3: 77-84. https://doi.org/10.24200/jams.vol3iss1pp77-83

Al-Dosary NMN, Al-Dobai S, Faleiro JR, 2016. Review on the management of red palm weevil Rhynchophorus ferrugineus Olivier in date palm Phoenix dactylifera L. Emir J Food Agr 28 (1): 34-44. https://doi.org/10.9755/ejfa.2015-10-897

Arnone S, Musmeci S, Catarci S, Sasso R, Nobili P, Cristofaro M, 2014. Allevamento del punteruolo rosso delle palme: un contributo per la sperimentazione in campo e per studi di laboratorio. XXIV Ital Congr Entomol, 9-14 Jun 2014, Orosei (NU), Società Entomologica Italiana. p. 107.

Bär A, Hamacher M, Ganthaler A, Losso A, Mayr S, 2019. Electrical resistivity tomography: patterns in Betula pendula, Fagus sylvatica, Picea abies and Pinus sylvestris. Tree Physiol 39: 1262-1271. https://doi.org/10.1093/treephys/tpz052

DE19753437 (A1), 1999. Electrotechnical aid for combating wood pests. https://www.freepatentsonline.com/DE19753437A1.html [13 Nov 2013].

Dembilio Ó, Jaques JA, 2015. Biology and management of red palm weevil. In: Sustainable pest management in date palm: current status and emerging challenges; Wakil W, Faleiro JR, Miller TA (Eds.). Springer Science+Business Media, Dordrecht, The Netherlands, pp: 13-37. https://doi.org/10.1007/978-3-319-24397-9_2

Dhouibi MH, Ncib M, Hawari W, 2017. Red palm weevil (Rhynchophorus ferrugineus) chemical treatments applied on ornamental palms in Tunisia: Results of extensive experiments. Int J Agr Innov Res 5 (6): 2319-1473.

Di Ilio V, Metwaly N, Saccardo F, Caprio E, 2018. Adult and egg mortality of Rhynchophorus Ferrugineus Oliver (Coleoptera: Curculionidae) induced by thiamethoxam and clothianidin. J Agr Vet Sci 11: 59-67.

El-Mergawy RAAM, Al-Ajlan AM, 2011. Red palm weevil, Rhynchophorus ferrugineus (Olivier): economic importance, biology, biogeography and integrated pest management. J Agr Sci Technol A 1: 1-23.

El-Sayed EO, 2020. Nano technology for real time control of the red palm weewil under climate change. In: Climate change impacts on agriculture and food security in Egypt; Omran EE, Negm AM (Eds). Springer Nature Switzerland. pp: 321-344. https://doi.org/10.1007/978-3-030-41629-4_15

EPPO Standards, 2015. A1 and A2 lists of pests recommended for regulation as quarantine pests. European and Mediterranean Plant Protection Organization. Paris. https://www.eppo.int/ACTIVITIES/plant_quarantine/A2_list

Esteban-Duràn J, Yela JL, Crespo FB, Alvarez AJ, 1998. Biology of red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae: Rhynchophorinae), in the laboratory and field life cycle, biological characteristics in its zone of introduction in Spain, biological method of detection and possible control. Bol San Veg Plagas 24: 737-748.

Faleiro JR, 2006. A review of the issues and management of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae) in coconut and date palm during the last one hundred years. Int J Trop Insect Sci 26: 135-154.

FAO, 2017. Proceedings of the Scientific Consultation and High-Level meeting on Red Palm Weevil management 29-31 March 2017, Rome, Italy.

Fedrizzi M, Pagano M, Tomasone R, Verani S, Sperandio G, 2013. A technical and economic analysis of felling systems on palm trees infested by red palm weevil (Rhynchophorus ferrugineus Olivier). Int Commiss Agr Biol Eng, Sect V, CIOSTA XXXV Conf "From Effective to Intelligent Agriculture and Forestry", Billund, Denmark, 3-5 July 2013.

FR3050358A1, 2017. Systeme d'elimination par electrocution des parasites de palmiers et autres vegetaux. https://worldwide.espacenet.com/publicationDetails/biblio?CC=FR&NR=3050358A1&KC=A1&FT=D [13 Nov 2013].

Giblin-Davis RM, Faleiro JR, Jacas JA, Pena JE, Vidyasagar PSPV, 2013. Biology and management of the red palm weevil, Rhynchophorus ferrugineus. In: Potential invasive pests of agricultural crops; Peña J (Ed.). CABI, Wallingford, UK, pp: 1-34. https://doi.org/10.1079/9781845938291.0001

Gora EM, Yanoviak SP, 2015. Electrical properties of temperate forest trees: a review and quantitative comparison with vines. Can J For Res 45 (3): 236-245. https://doi.org/10.1139/cjfr-2014-0380

JP2004141127 (A), 2004. Method for exterminating pine weevil by electric current. https://patents.google.com/patent/JP2004141127A/en [13 Nov 2013].

Ju RT, Wang F, Wan FH, Li B, 2011. Effect of host plants on development and reproduction of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). J Pest Sci 84: 33-39. https://doi.org/10.1007/s10340-010-0323-4

Kaakeh W, 2005. Longevity, fecundity, and fertility of the red palm weevil, Rynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) on natural and artificial diets. Emir J Agr Sci 17: 23-33. https://doi.org/10.9755/ejfa.v12i1.5045

Kaakeh W, Khamis AA, Aboul-Nour MM, 2001. The red palm weevil: the most dangerous agricultural pest. UAE Univ Print Press, 165 pp.

Kaimoyo E, Farag MA, Sumner LW, Wasmann C, Cuello JL, VanEtten H, 2008. Sub‐lethal levels of electric current elicit the biosynthesis of plant secondary metabolites. Biotechnol Progr 24 (2): 377-384. https://doi.org/10.1021/bp0703329

Kakutani K, Matsuda Y, Haneda K, Nonomura T, Kimbara J, Kusakari S, Osamura K, Toyoda H, 2012. Insects are electrified in an electric field by deprivation of their negative charge. Ann Appl Biol 160: 250-259. https://doi.org/10.1111/j.1744-7348.2012.00538.x

KR101117161 (B1), 2012. Electric power supply device and method for pest control. https://worldwide.espacenet.com/publicationDetails/biblio?CC=KR&NR=101117161B1&KC=B1&FT=D [13 Nov 2013].

Leech P, Ressel P, 2003. Applications to semiconductor devices. In: Surface analysis methods in material science, pp: 435-454. Springer, Berlin, Heidelberg. DOI: 10.1007/978-662-05227-3_18. https://doi.org/10.1007/978-3-662-05227-3_18

Manachini B, Billeci N, Palla F, Lorusso LC, 2012. Impoverishment of Sicilian (Italy) historical and cultural assets by an alien insect species: the case of the red palm weevil. Conserv Sci Cult Herit 12: 149-165.

Massa R, Caprio E, Santis M De, Griffo R, Migliore MD, Panariello G, Pinchera D, Spigno P, 2011. Microwave treatment for pest control: the case of Rhynchophorus ferrugineus in Phoenix canariensis. EPPO Bull 41 (2): 128-135. https://doi.org/10.1111/j.1365-2338.2011.02447.x

Massa R, Panariello G, Pinchera D, Schettino F, Caprio E, Griffo R, Migliore MD, 2017. Experimental and numerical evaluations on palm microwave heating for red palm weevil pest control. Scientific Reports 7: 45299. https://doi.org/10.1038/srep45299

Matowo NS, Koekemoer LL, Moore SJ, Mmbando AS, Mapua SA, Coetzee M, Okumu FO, 2016. Combining synthetic human odours and low-cost electrocuting grids to tract and kill outdoor-biting mosquitoes: Field and semi-field evaluation of an improved mosquito landing box. PLoS One 11: 1-25. https://doi.org/10.1371/journal.pone.0145653

Matsuda Y, Nonomura T, Kakutani K, Kimbara J, Osamura K, Kusakari S, Toyoda H, 2015. Avoidance of an electric field by insects: Fundamental biological phenomenon for an electrostatic pest-exclusion strategy. J Phys: Conf Series 646. https://doi.org/10.1088/1742-6596/646/1/012003

Matsuda Y, Takikawa Y, Kakutani K, Nonomura, T, Toyoda H, 2020. Analysis of pole-ascending-descending action by insects subjected to high voltage electric fields. Insects 11: 1-10. https://doi.org/10.3390/insects11030187

Mazza G, Francardi V, Simoni S, Benvenuti C, Cervo R, Faleiro JR, Llácer E, Longo S, Nannelli R, Tarasco E, Roversi P, 2014. An overview on the natural enemies of Rhynchophorus palm weevils, with focus on R. ferrugineus, Biol Control 77: 83-92. https://doi.org/10.1016/j.biocontrol.2014.06.010

Metwaly N, 2010. Endotherapic injection method for palm trees to control the red palm weevil (Rhynchophorus ferrugineus Olivier), Acta Hort 882: 437-439. https://doi.org/10.17660/ActaHortic.2010.882.49

Mielle P, Markuis F, 1999. An alternative way to improve the sensitivity of electronic olfactometers. Sens Actuat B: Chem 58: 526-535. https://doi.org/10.1016/S0925-4005(99)00158-6

Montanari M, 2012. Statistica ambientale. Analisi multivariata. Metodologie di Ordinamento. SISSAD Snc.

Murphy ST, Briscoe BR, 1999. The red palm weevil as an alien invasive: biology and the prospects for biological control as a component of IPM. Biocontr News Inform 20: 35-46.

Musmeci S, Belvedere S, Sasso R, Arnone S, Cristofaro M, Nobili P, La Marca A, De Biase A, 2017. Last-male sperm precedence in Rhynchophorus ferrugineus (Olivier): observations in laboratory mating experiments with irradiated males. Bull Entomol Res 1-9. https://doi.org/10.1017/S0007485317000840

Nakash J, Osam Y, Kehat M, 2000. A suggestion to use dogs for detecting red palm weewil (Rhyhnchoforus ferrugineus) infestation in date palm in Israel. Phytoparasitica 28: 153-154. https://doi.org/10.1007/BF02981745

Niamouris K, Psirofonia P, 2014. Preliminary study in the use of electric current for the control of Rhynchophorus ferrugineus. Entomol Hell 23: 52-58. https://doi.org/10.12681/eh.11536

Ragaei M, 2010. Wings of red palm weevil (RPW) and their behavior as semiconductor. Proc 4th Int Date Palm Conf; Zaid A, Alhadrami GA (Eds.), pp: 1033-1044. https://doi.org/10.17660/ActaHortic.2010.882.120

Ragaei M, Sabry AH, 2013. Red palm weevil, Rhynchophorus ferrugineus and harvest termites, Anacanthotermes ochraceus with the infrared receptors structures as a sensitive detector to hosts and shelters. J Appl Sci Res 9: 1010-1014.

Sardaro R, Grittani R, Scrascia M, Pazzani C, Russo V, Garganese F, Porfido C, Diana L, Porcelli F, 2018. The red palm weevil in the city of Bari: A first damage assessment. Forests 9: 452. https://doi.org/10.3390/f9080452

Sayed AMM, Ahmed SAA, El-Adawy MM, Ali MMM, 2016. Suppression threat of red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in date palm by using novel of insecticides and technology. 3rd Int Conf on Sustainable Agriculture and Environment (3rd ICSAE). Sept 26-28, Warsaw, Poland.

Shackleton MA, Jennions MD, Hunt J, 2005. Fighting success and attractiveness as predictors of male mating success in the black field cricket, Teleogryllus commodus: The effectiveness of no-choice tests. Behav Ecol Sociobiol 58: 1-8. https://doi.org/10.1007/s00265-004-0907-1

Soffan A, Antony B, Abdelazim M, Shukla P, Witjaksono W, Aldosari SA, Aldawood AS, 2016. Silencing the olfactory co-receptor RferOrco reduces the response to pheromones in the red palm weevil, Rhynchophorus ferrugineus. PLoS ONE 11 (9): e0162203. https://doi.org/10.1371/journal.pone.0162203

Stiles W, Jorgensen I, 1914. The measurement of electrical conductivity as a method of investigation in plant physiology. New Phytol 13 (6-7): 226-242. https://doi.org/10.1111/j.1469-8137.1914.tb05752.x

Stone GE, 1903. Injuries to shade trees from electricity. Hatch Exp Stat Massach Agr College Bull 91: 1-21. https://doi.org/10.5962/bhl.title.19644

Urban JE, Broce A, 2000. Killing of flies in electrocuting insect traps releases bacteria and viruses. Curr Microbiol 41: 267-270. https://doi.org/10.1007/s002840010132

Wakil W, Yasin M, Qayyum MA, Ghazanfar MU, Al-Sadi AM, Bedford GO, Kwon YJ, 2018. Resistance to commonly used insecticides and phosphine fumigant in red palm weevil, Rhynchophorus ferrugineus (Olivier) in Pakistan. PLoS ONE 13 (7): e0192628. https://doi.org/10.1371/journal.pone.0192628

Wattanapongsiri A, 1966. A revision of the genera Rhynchophorus and Dynamis (Coleoptera: Curculionidae). Bangkok, Thailand; Dept Agr Sci Bull 1, 328 pp.

White CS, Nelms RM, Wayne Johnson R, Grzybowski RR, 1998. High temperature electronic systems using silicon semiconductors. IAS Annual Meeting (IEEE Ind Appl Soc). DOI: 10.1109/IAS.1998.730263. https://doi.org/10.1109/IAS.1998.730263

Published
2021-02-09
How to Cite
Fedrizzi, M., Pagano, M., Guerrieri, M., Tomasone, R., Musmeci, S., Arnone, S., Sasso, R., Cristofaro, M., Antonucci, F., & Santangelo, E. (2021). Electrocution and containment methods to reduce the activity of red palm weevil (Rhynchophorus ferrugineus, Ol.). Spanish Journal of Agricultural Research, 18(4), e1006. https://doi.org/10.5424/sjar/2020184-16446
Section
Plant protection

Most read articles by the same author(s)